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Abstract 

 At the heart of most modeling issues is a focus on variance reduction. 

Experimental designs are chosen based on both efficiency and a variety of variance based 

criteria. In many situations due to cost, time and availability issues it is beneficial to 

produce metamodels of simulations. Experimental designs for the region of operability 

are constructed to collect the simulation output required to construct representative 

metamodels. Independently, the method of control variates is a well established technique 

often employed to reduce variance in discrete event simulations. This thesis explores the 

variance reduction benefits that can be obtained by combining optimal experimental 

designs with control variates in multipopulation simulation experiments when 

constructing simulation metamodels. A variety of variance measures of effectiveness are 

used to demonstrate the theoretical benefits obtained by this approach. In addition, a 

randomly selected data set from within the design region is used to demonstrate the 

practical application and reduction of predictive variance obtained using this 

methodology. 
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Control Variates and Optimal Designs in Metamodeling 

1.  Introduction 

1.1 Problem Background  

As computing power increases rapidly, the number of potential systems that can be 

modeled with accuracy increases as well. However, every real world situation has variance 

throughout the process and this variance must be captured by simulations of real world processes 

with distribution functions. This leads the analysis team to results that involve a range of values 

in order to account for the aggregation of variance and a multitude of potential scenarios. Some 

models, even with current computing power take considerable time and resources to design and 

run and still more resources are required to analyze the model’s output. By using these initial 

simulations to characterize the model and create a metamodel, we can provide estimates without 

rerunning the model. By creating better estimators and reduced variance within the output, the 

simulation creates better results for the analysis team to then follow.  

1.2 Purpose of the Study  

The purpose of this thesis is to show the potential benefits of using control variates when 

using optimal designs to create metamodels from simulation models. These benefits could 

include increasing the prediction accuracy and reducing the variance of the output with fewer 

runs and less resources. In experimental design there are a variety of variance optimal design 

techniques based on different design criteria. This study will seek if additional variance reduction 

might be garnered through the application of control variates. 
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1.3 Questions to be Investigated 

Several questions will be investigated by this research into the application of control 

variates across different optimal designs and within a real world model. The most important 

question to be answered is whether control variates do indeed provide a benefit to an analyst 

seeking to create a metamodel from a simulation and how significant is the benefit. The next 

question is whether or not this benefit is observed only with specific design structures or may be 

applied in all cases. Finally, the study will determine if control variate models create better 

predictions for points in the design space than non-control variate models. 

1.4 Hypotheses 

My hypothesis to these questions is that control variates, when used properly, will have a 

clear benefit in prediction as well as decreasing the half-widths and variance estimates. I 

hypothesize that this benefit will be seen through all optimal design structures when compared to 

their non-control variate case. I also hypothesize that when different designs are compared, the 

control variate and non-control variate models will perform similarly. For example, if the non 

control variate model is better than another design’s non control variate model, then the same 

should happen when control variates are applied. Within these hypotheses I predict that changes 

to the model will impact the benefit of control variates. Therefore, the model must be correct to 

begin with and control variates implemented correctly before investigating the interaction 

between control variates and different optimal designs. 

1.5 Rationale and Theoretical Framework 

The rationale behind my hypotheses is that control variates and optimal designs have 

both shown to assist in metamodeling analysis as seen in the forthcoming literature review. The 
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techniques do not contradict each other and the use of one does not negatively impact the 

benefits gained by using the other. Therefore, by using them together the benefits of each should 

still be visible. Theoretically, control variates allow the analyst to use the true values that occur 

within the simulation to assist in interpreting the result while an optimal design allows the 

analyst to investigate the design space as efficiently as possible. Therefore, using both methods 

allows the analyst to get the best possible picture of the design space and then adjust these results 

with control variates to create the best model possible. 

1.6 Assumptions 

Several assumptions exist within the use of control variates and optimal designs as well 

as various output analysis techniques that will be used. These will be discussed in detail later. 

For now, overall assumptions for the thesis include the use of a verified and validated model, 

assumptions of the individual techniques used are true, and that the reader has a basic knowledge 

of simulation modeling and statistical analysis. 

1.7 Importance of Study 

Insights gained by this thesis research will benefit analyses that seek to create 

metamodels to accurately characterize simulations. The reduction in unexplained variance 

through the use of control variates will allow for increased precision in these metamodels 

without any increase in the number of experimental design points. In a world where everything 

needs to be faster and cheaper, this can be very advantageous to anyone conducting computer 

simulations that meet the very limited needs of optimal designs and control variates. 
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1.8 Definition of Terms 

As mentioned in the assumptions, this thesis is written assuming the reader has a basic 

understanding of metamodeling and statistical analysis. Generally speaking, metamodeling is a 

model of a model where the construction and development of the rules, constraints, models and 

theories are useful for modeling a predefined class of problems. Control variates is a technique 

which uses observed randomly distributed variable values in a model to create a better estimate 

of the response by relying on the correlation between the control variate and the response. The 

factors which are used as control variates will be labeled control variates, and will be represented 

by a q in the equations. The factors of interest, which are changed throughout a design to see 

their impact on the response, will be represented with the variable p. The number of responses of 

interest from the model will be represented with the variable m. The number of runs within a 

single replication is represented with the variable k, while the number of replications for a design 

is l.  Optimal design construction uses a measure of efficiency to create a design within model 

constraints that is optimal with respect to the chosen measure. There are several measures of 

efficiency and therefore for any given number of factors and observations several different 

optimal designs, each with their own advantages and disadvantages may be constructed. Several 

of these experimental design construction methods will be described in the literature review. 

Table 1: The variables used in future 

equations. 

Term Meaning 

q Number of control variates 

p Number of factors of interest 

m Number of responses 

k Number of runs per replication 

l Number of replications 

http://en.wikipedia.org/wiki/Scientific_modelling


 

5 

1.9 Scope and Delimitations 

There are many widespread assumptions throughout statistical analysis. This research 

will not seek to prove or disprove them, but instead will accept the prior work and proofs as 

accurate. The scope of this project is to show the impact of combining these various reduction 

techniques for the models shown so that they may be considered for use by others. The scope of 

this research does not limit their benefit to only these scenarios; however it does not prove it 

beneficial in a universal case either. Complex simulations can have what seems like a countless 

number of moving parts and the benefit from these variance reduction techniques may not be 

easily seen as the system becomes ever more complex. Meanwhile, due to the low cost to 

implement these techniques and the potential benefits to a research team in the instances it does 

work, control variates should be considered when constructing metamodels from simulation data. 

1.10 Preview 

This thesis explores and discusses prior research in chapter 2, the literature review 

section. This chapter clearly explains the statistical concepts and methods used in the thesis such 

as control variates, optimal experimental designs, analysis of covariance, evaluation techniques, 

and metamodeling. This provides a strong basis of knowledge for the reader to then explore the 

methodology used in this research. 

Chapter 3, the methodology section, details the process used to create and analyze two 

different simulations of interest. The first simulation analyzed is an expansion of a simulation 

developed by Arnold, Nozari, and Pegden (1984), of the waiting time experienced by cars on a 

single lane section of road. The second simulation is a real world adaptation from an Air Force 

unit that is responsible for mission planning. The statistical methods used to analyze the benefits 
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of control variates with these models is primarily based on prior research of Arnold, Nozari, and 

Pegden (1984) and Porta Nova and Wilson (Nov. 1989). 

Following the methodology chapter, the analysis of the effectiveness of control variates 

using these two models is discussed in detail in chapter 4. Potential benefits of control variates 

when creating metamodels using different experimental designs are demonstrated to assist the 

potential research team employ control variates effectively. In order to measure these benefits, 

each model created is evaluated using several variance estimators as well as the mean squared 

error for predicting several randomly selected points and the corresponding prediction half 

width. 

Chapter 5 concludes this thesis with a synopsis of the research, the significance of the 

research and results found, and recommendations for further research. 
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2. Literature Review 

2.1 Chapter Overview 

This section describes prior research in control variates, metamodeling, analysis of 

covariance, optimal designs, and some statistical evaluative methods. The goal of this discussion 

is to demonstrate what research has been conducted in the past while giving a basic 

understanding of how each method is used in current research. This section also provides 

references to published journals and textbooks where the interested reader can find additional 

information on the topics discussed. The methodology found in chapter 3 is based on this past 

research in many cases, making understanding of this foundational material very important. Any 

reader who already has a full understanding of these areas can go to chapter 3 to look at the 

specific methodology used in this research. 

2.2 Control Variates 

2.2.1 Overview 

Prior research has been done in many different scenarios and applications of control 

variates as well as optimal experimental designs. Control variate studies include scenarios with 

univariate and multivariate responses, control variates, and factor settings as well as known and 

unknown variance cases. Single population research, where a simulation is conducted with only 

one setting of factor levels, has been conducted by Lavenberg et al (1978), Kleijnen (1974), and 

Cheng (1978). Cheng (1978) also assumes the variance is known for the control variates 

throughout his research. Lavenberg et al (1978) developed the use of control variates for single 

response simulations. Rubenstein and Marcus (1981) extended the research of single population 

simulations to computer experiments that include multivariate responses. From here, Arnold, 
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Nozari, and Pegden (1984), and Porta Nova and Wilson (1989) expand from the single 

population to examine multiple population scenarios. Arnold, Nozari, and Pegden (1984) look 

into only single response scenarios when the variance is known and when the variance is 

unknown. Porta Nova and Wilson (1989) took this start and expanded it to scenarios with 

multivariate responses. Both articles investigate univariate and multivariate factors and control 

variates. All of these research journals cover the variance reduction benefits of control variates 

and their ease of use. However, while Arnold, Nozari, and Pegden (1984) and Porta Nova and 

Wilson (1989) mention multipopulation test designs, they never investigate the added benefit of 

different experimental design structures. This thesis will expand on this prior research and find 

whether the optimal designs, known throughout Design of Experiments to reduce variance in the 

prediction model, can be combined with control variates to create an even better metamodel with 

even less variance. 

Variation is at the center of any process. It is what makes it so difficult to predict every 

potential scenario. Simulations use distribution functions to more accurately capture the real-life 

variation which exists. The resultant output, which is a function of random variables, is itself a 

random variable. There are many ways to account for variation in a simulation to attempt to 

increase the precision of results and obtain smaller confidence intervals from the simulation. 

These variance reduction techniques include common random numbers (CRN), antithetic 

variates (AV), and control variates (CV). Control variates are the method of choice for this paper 

to improve the results of different simulations. 

2.2.2 Single Control Variates 

Control variates attempt to use the correlation between the known distributions used to 

create the model, and the measure of interest that the simulation may return (Law, 2007). For  
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Table 2: Areas of prior research on control variates. 

 Population Factors Variance Response Design 

Author Single Multiple Single Multiple Known Unknown Single Multiple Single Multiple 

Arnold 

(1984) 
 X  X X X X  X  

Cheng 

(1978) 
X   X X  X  X  

Kleijnen 

(1974) 
X  X   X X  X  

Lavenberg 

(1978) 
X   X  X X  X  

Marcus 

(1981) 
X   X  X  X X  

Porta 

Nova 

(1989) 

 X  X  X  X X  

This 

Thesis 
 X  X  X X X  X 

example, if a simulation is run to model a serving process, the waiting time might be the 

unknown variable the experimenter wants to find while the service and interarrival times are 

used to create the model. Because we know the service and arrival rates, as they were input into 

the computer based on data, we can use their known values to make adjustments to the 

simulations waiting time. This adjustment should move the simulation value towards the true 

value. In this example it can become quite intuitive, an increase in service time would be directly 

related to the waiting time, making us more confident on the true waiting time by knowing the 

service time and creating a reduction on the half width that surrounds the waiting time 

estimation. On the contrary, an increase in interarrival times would give servers more time to 

serve customer and equate to a decrease in waiting time. This suspected inverse relationship can 

be applied to the simulation output by adjusting the result towards a more accurate number and 

reduce the variance of the confidence interval. 



 

10 

The equation for applying a control variate to predict the output variable,   , can go as 

follows (Law, 2007): 

            Equation 1 

Y: estimate the simulation returns for the value of interest 

a: multiplier for the CV (positive value when directly correlated) 

C : value the simulation returns for the CV 

v: is the known expectation of C  

Therefore, Y decreases when C is greater than its known expectation or is adjusted up 

when it is less than its known expectation. The addition of these values does not change the 

expected value of Y as shown in Equation 2 (Law, 2007): 

                      Equation 2 

                                                     

The control variate also has the effect of reducing the variance of Y as long as certain 

conditions are met: 

                                    Equation 3 

As shown in Equation 3 there will be a reduction in variance as long as           

           (Law, 2007). Equation 3 shows why the choice of C and a are very important to the 

effectiveness of variance reduction from the CV. It may seem easy to place a at ±1, however this 

puts the entire benefit on the choice of C alone (Law 2007). By adjusting a as well, we can 

improve our estimation even more. However, since we do not know the true value for the Cov(Y, 

C); methods must be used to estimate it and then find the best value of a as to maximize the 

variance reduction. Because the best value for a should be when the derivative of the variance is 

set to zero, then solve for a we find, 

         

  
                              

        

      
            

Equation 4 
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By substituting this value back into the equation for         we obtain an estimate of 

      
    

      
          

         

      
       

                     
Equation 5 

 

Where    
  is the correlation between C and Y. From here it is easy to see that any 

correlation between C and Y would result in a decrease of variance on Y and a correlation of 1 

would mean that C and Y are completely correlated and C could be used to predict Y perfectly 

every time, eliminating all of the variance (Law, 2007).  

As mentioned before, because the true value of Y, and therefore the true value of 

          are unknown, we cannot just fill in these equations with our simulation values. This 

makes the user have to estimate the best value for a*. This can be done using the information 

from the simulation. Since we will have replications of the simulation, we can use these samples 

to estimate the sample                 and then     

         
                      

   

   
            

    

  
    

             
Equation 6 

This creates the final point estimate for the value of interest, µ, to be: 

  
                                 

    

  
    

        (Law, 2007) Equation 7 

This is not the only form of estimating a*, although it is one of the more popular. The 

disadvantage of this method is that a* is no longer independent of C because it was created based 

on the simulation values of C (Law, 2007). This may result in some bias to the estimate (Law, 

2007). The other methods for solving for a* include jackknifing, scenarios where we know the 

variance of C, or splitting up the simulation output data to estimate a* (Law, 2007). Glynn and 
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Szechtman (2001) state that according to Limit Theory, all estimates for a* are an improvement 

at the first-order central limit theory level and can only make a difference at the second-order 

level (Glynn & Szechtman, 2001).  

2.2.3 Multiple Control Variates 

Thus far we have examined the use of a single control variate. However, with simulations 

becoming even more extensive there is still the possibility of multiple control variates. They 

work the same way as the single case. Each CV can have its own a* associated with it depending 

on the correlation between the control variate and the resulting parameter. Because each CV will 

have an expectation of zero, with exception of bias introduced by a*, it can become even more 

helpful towards estimation and variance reduction as long as that bias is small enough to be 

accepted. This combination of CVs creates the following estimate for µ, using the same 

methodology as above and a total number of k control variates being applied, 

    
                  

            
 
      (Law, 2007)  Equation 8 

Now that µ has been estimated, the variance of the estimation is of interest as well. Since 

the equation introduces multiple control variates, it no longer benefits from just the correlation 

between a CV and response Y, but also the correlation between the CVs themselves and results 

in the following solution for variance (Law 2007): 

                  
         

 

   

               

 

   

                   

   

   

 

   

 

Equation 9 

Derivating this equation with respect to each    will leave a set of k linear equations to 

solve for the variance minimizing weights for each    (Law 2007). Estimating these weights will 

lead to the same coefficients as a least-squares regression method, therefore when multiple CVs 
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are used, it can be referred to as regression sampling (Law 2007). This is a key solution as it is 

the formula which will be used in solving for the values of each a* in the models in this paper. 

                          

      = Coefficient on factors used to estimate the response 

X = n by p matrix of design parameters used to get the response 

Y = n by 1 matrix of responses 

Equation 10 

2.2.4 Sources for Control Variates 

Averill Law discusses three different types of determining sources for control variates, as 

a well chosen control variate is highly important in this process. Kwon and Tew (1994) use two 

control variates, one highly correlated and one less correlated, and in every combination of runs, 

both control variates reduced the variance by some margin. This shows that while the degree of 

correlation does correspond to the impact the CV has, even less correlated variates can be 

helpful. Meanwhile, the most effective control variate is one that is highly correlated with the 

value of interest while having a low variance itself (Law, 2007). The first type is called an 

internal CV. This may be the most common and was seen in the earlier example of the service 

and interarrival times. They are the input random variates within a simulation (Law, 2007). 

Internal variates are created in order for the model to run (Law, 2007). This makes their 

application nearly free of cost making them worthwhile even if there is only a small change in 

variance (Law, 2007). While it may be tempting, it is not always best to use the same control 

variate for every response because the control variate may not be equally correlated with each 

response (Nelson & Yang, 1992).  

Another source for this first example of internal control variates can also come from 

probability distributions. In many simulations, there is a node where an activity happens to only 

a percentage of the total entities that travel through it. The basic application of other internal 
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control variates is the same. However, in this case we will standardize the values by their mean 

and their standard deviation using a slightly different equation used by (Bauer K. W., 1993). 

     
    

        

 

 
 

    = Value for control variate i 

L = 1 if entity n was true; 0 if entity n was false 

p = Known probability of total entities that should be true 

N =Total number of entities to pass through the node 

Equation 11 

 

Another type of CV is the external control variate. This type of CV uses a simplified 

version of the model to compute the expectation of the model’s output random variable. This 

simplified model is created with assumptions that we may not be comfortable applying to the 

large model, but for the case of creating an external CV, can be very helpful (Law, 2007). The 

two models are then run simultaneously using CRN (Law, 2007). However, because this method 

creates a simplified model, it is not free of cost or time and these factors must be evaluated when 

deciding whether or not to apply the method.  

The final type of CV, according to Law, would be the multiple estimators. These 

estimators are created when there are a collection of unbiased estimators for µ within the model. 

This collection is then compared to each other in the following format (Law, 2007): 

           
 
                                    Equation 12 

This method assumes that each    for       is an unbiased estimator of µ so this method 

must be used carefully.  

2.2.5 Problems with Control Variates 

As control variates and all of these methods offer benefits to simulation experiments, they 

should not be used without thought. The simulation team cannot simply apply every variable 

within an experiment as a control variate (Law, 2007). As stated earlier, the bias that can be 
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created by estimating a* can compound on itself as variates are added to the model and could 

quickly get out of hand if they are all chosen with no supporting correlation behind their 

selection. There are many methods for choosing the best a* and control variates in the model, 

one of which is shown by Bauer and Wilson (1992). However, they will not be investigated 

within the scope of this paper. 

2.2.6 Where Control Variates have been Used  

Control variates can be used in a large number of scenarios, and even applied to any 

stochastic simulation (Nelson B. L., 1990). Porta Nova and Wilson (1989) apply the method to a 

queuing network model. Kwon and Tew (1994) show an example for mechanics and technicians 

and a series of tasks. Henderson and Kim (2004) apply CVs to a discrete time-finite state space 

markov chain. Adewunmi and Aickelin (2012) describe its use for manufacturing, call center, 

and cross-docking discrete event simulations. Anonuevo and Nelson (1988) use CV for a model 

of an M/M/1 traffic system and a machine repair simulation. Nelson and Staum (1995) describe 

its use within financial engineering and ranking and selection systems as well as an inventory 

planning example. Nelson (1990) describe its use in predicting univariate mean, multivariate 

mean, and linear models before going into further detail with an example in machine repair, an 

inventory system, and an M/M/1 queue. Fort and Moulines (2008) apply CVs to financial 

scenarios including a call-put parity and asian option examples.  

2.2.7 Other Variance Reduction Options 

Control Variates are certainly not the only variance reduction technique available. 

Although it has its advantages, there are other possibilities that can be used effectively as well. 

Common random numbers (CRN) are the most commonly used reduction technique and take 

advantage of the same random number stream applied to alternative systems to evaluate their 
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output (Adewunmi & Aickelin, 2012). Their use can be investigated further in Law (2007), 

Adewunmi and Aickelin (2012), and Nelson and Staum (1995). They are often combined with 

CVs so multiple systems can be compared easily because of the CRN, and with a smaller 

variance because of the CVs. Although it may assist in evaluation, Adewunmi and Aickelin 

(2012) found control variates to be the only method that was helpful in all three scenarios they 

investigated.  

Antithetic variates are also a commonly used for variance reduction. Antithetic variates 

use random number streams that create a correlation between replications of the simulation 

model. This model is typically trying to improve the performance of a single system (Adewunmi 

& Aickelin, 2012). Of the three scenarios that were evaluated by Adewunmi and Aickelin they 

found antithetic variates to be particularly good for the cross docking scenario. Kwon and Tew 

(1994) combine CV and antithetic variates to investigate a potential improvement on prior 

systems. They concluded that all combinations reduced variance from a model which did not 

include any variance reduction techniques. However, the degree of improvement depended on 

amount of correlation between the control variates and the response (Kwon & Tew, 1994). The 

best model tested used antithetic variates for all random number streams as well as two control 

variates. More information on antithetic variates is covered by Law (2007), and the connection 

between CV and antithetic variates can be found in Glynn and Szechtman (2001). 

The assumptions that allow control variates to be so useful are fairly simple. They 

include that the joint distribution for the control variates and the response are independently and 

identically distributed, that the expected value of the control variate is known, and that the 

variance of the control variate and the response are less than infinity (Fort & Moulines, 2008). 

These assumptions are covered in more detail in Nelson (1990) as they are needed for several 
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theorems surrounding control variates and how to remedy the situation when the assumption is 

invalid or unknown. More information on the assumptions can also be found in Porta Nova and 

Wilson (1989), Glynn and Szechtman (2001), Nelson and Yang (1992), and Anonuevo and 

Nelson (1988). 

Batching is a method that is used frequently in conjunction with control variates. It can be 

used to solve the problem of the absence of applying CVs for single replication experiment 

design of steady state simulation (Nelson 1990). It is also commonly used to remedy the bias that 

is introduced by a simulation that does not meet the normality assumption (Nelson 1990, Nelson 

and Yang 1992, Anonuevo and Nelson 1988). Jacknifing, splitting, and bootstrapping can be 

used to account for a lack of normality as well (Nelson B. L., 1990). Table 3 shows the areas of 

variance reduction that are covered by several different published journal articles. 

2.3 Metamodeling 

Control variates are typically implemented for their use in variance reduction of a single 

population simulation because of their low cost and ease of use. The control variates can also be 

used in multi population experiments whose output is used to create linear regression 

metamodels. These models show which factors are most important to the response and the 

coefficients associated with each factor. These metamodels can be used in place of the 

simulation to predict the response with some associated variance and confidence interval on both 

the response and the weights of the input factor levels. In this situation, control variates can 

sometimes be used to reduce the half width of the regression coefficient confidence intervals and 

to reduce the variance of the model. According to Arnold, Nozari, and Pegden (1984), when the 

variance is known, the addition of control variates will always be beneficial, while an unknown 
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variance opens up potential for additional control variates to be of little benefit. This shows why 

the selection of which control variates to use is important. Because the variance is rarely known, 

we will look into the unknown variance case in this thesis.  

 2.3.1 Linear Modeling 

A linear model starts out in the form: 

                Equation 13 

Table 3: Guide for sources of prior research. 

Author Subject Matter 

Uses for 

CV 

Derive 

CV 

Batch 

Means 

Antithetic 

Variates 

Common 

Random 

Numbers 

Description of 

Assumptions 

Other VRT 

(Porta Nova & 

Wilson, Nov. 1989) 

X X    X  

(Goodman, 2005)  X     X 

(Kwon & Tew, 1994) X X  X    

(Glynn & Szechtman, 

2001) 

 X  X  X X 

(Kim & Henderson, 

2004) 

X X      

(Nelson & Yang, 

1992) 

 X X   X  

(Adewunmi & 

Aickelin, 2012) 

X   X X   

(Anonuevo & Nelson, 

1988) 

X X X   X  

(Nelson & Staum, 

1995) 

X X   X   

(Nelson B. L., 1990) X X X   X  

(Fort & Moulines, 

2008) 

X X    X  

(Law, 2007)  X X X X X X 
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Where β are unknown, constant coefficients for factors Xi, i = 1…n and   is the random error 

component. However, when control variates are added the form for the prediction equation must 

be modified to account for the added inputs. Now the model reflects the following form: 

                          Equation 14 

Where there is now the added vector of coefficients  , also represented as a in the univariate case 

for control variates explained earlier in the literature review. Each entry applies to the coefficient 

for a control variate in the vector C. The vector C is centered by subtracting each control variate 

by its corresponding distribution mean in the vector   . For the remainder of this section, C will 

represent the centered value of     . However, because these control variates still have an 

expected value of 0, due to the known mean being subtracted, they should not change the 

expected value of the response making                 and  

                          equal. 

Because we assume the joint normality of the responses and control variates, according to 

Arnold, Nozari, and Pegden (1984), we can create the conditional distribution as follows: 

                                
   

              
      , 

                                            conditioned on C 

Equation 15 

 

Where 

  =response of observation i 

  =vector of control variates of observation i 

  =vector of factors of observation i 

  =mean for observation i 

   = covariance between control variates and responses 

  = variance of the control variates 

G=(Xi   Ci) 

γ=

 

 
 
 

  

 
  

  

 
   

 
 
 

 

    
      

   = variance when conditioned on control variates 
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Because the variance is estimated using control variates in Equation 15, degrees of 

freedom to estimate the variance are lost due to being used for the control variate inclusion. This 

means the variance reduction achieved must now be greater to overcome the loss of degrees of 

freedom in the model error. Therefore,  
       

     
 is the greatest value that 

  

   can take on in order 

to see benefits. This ratio, which varies based on the CV application, is referred to as the loss 

factor by Porta Nova and Wilson (Nov. 1989) and is used significantly throughout the research. 

Arnold, Nozari, and Pegden (1984) then use this distribution formula to define    and    , 

the sample values for coefficients and variance respectively. The value of     and    is shown in 

Equation 20 and Equation 21 

                                         Equation 16 

                    
                Equation 17 

      and        are independent. 

Where, 

n=number of runs 

p=number of factors 

q=number of control variates 

 

Arnold, Nozari, and Pegden (1984) then creates an estimate for the new coefficients of 

the factor levels to be: 

                              

                             

Equation 18 

Equation 19 

Where,  

    = coefficients with use of control variates 

           = the p x p upper left corner submatrix of         

 

Because the expected value of the new      is still equal to the true value  , it can be considered 

an unbiased estimator. For details on the model coefficient and variance derivations they can be 
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found in Arnold, Nozari, and Pegden (1984). As mentioned in the control variate section, least 

squares regression analysis will solve for these coefficient values. With    being the variance 

estimate of     , it must be correctly estimated in order for accurate comparisons between 

models. This comparison will be used to evaluate the results of this thesis.  

                                  

                                        

Equation 20 

Equation 21 

This estimate can then be multiplied by 
     

       
 in order to get a variance estimate that accounts 

for the loss of error degrees of freedom due to the number of control variates applied (Arnold, 

Nozari, & Pegden, 1984). These measures will be used to analyze the results. 

Testing these new      for statistical significance can also be accomplished where the null 

hypothesis sets Aβ=0 and an alternative hypothesis of Aβ≠0, for (p - k)p known matrix A of rank 

(p-k). According to Arnold, Nozari, and Pegden (1984), the result of the ordinary linear models 

creates a test statistic, f, where: 

  
                       

  
     

        
                  

                 
                                              

Reject if:             
                                

Equation 22 

 

Because these statements do not include the control variates, C, they are true 

unconditionally.  

The Bonferroni approach can be used to create simultaneous confidence intervals of the 

coefficients. Montgomery (2009) mentions this technique is much simpler with very small 

reduction in accuracy when only a small number of coefficients are being estimated. This 

approach divides the alpha value of each estimation by the total number of parameters to be 
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estimated concurrently. This way the simultaneous confidence interval is at least as large as the 

desired alpha value. The equation for confidence intervals with this method is: 

  
    

  
           

 
     

       
          

  
 

Equation 23 

2.3.2 Multivariate Response 

Porta Nova and Wilson (1989) took the work done with univariate responses and 

expanded it to multivariate responses. Now the linear model used to predict the response must 

account for all responses and takes on the form:  

                              Equation 24 

Where, 

   = 1 x m matrix, for run number, i, and each response variable up to m. 

   = 1 x p matrix, for run number, i, and each factor of interest up to p.  

β = m x n matrix, the coefficient for each factor, m, and design point n, within the design 

   = 1 x q matrix, the control value for run number, i, and each factor of interest up to q.  

δ = m x n matrix, the coefficient for each control variate, q, and design point n, within the design. 

   = 1 x m matrix, the residual error for each response up to m. 

Through inspection it is seen how the univariate response model is expanded to account 

for multiple responses. Porta Nova and Wilson (1989) create many of the same derivations listed 

in the earlier univariate case, while this time accounting for multiple responses and the 

adjustments that must be made to the matrices throughout the process in order to accomplish 

them concurrently. They also apply the assumption for the joint normal distribution. The largest 

difference with additional responses is accounting for simultaneous confidence interval. Porta 

Nova and Wilson (1989) and Montgomery (2006) show how a simultaneous ellipsoid method, as 

well as the Bonferroni rectangle inequality, can be used to get concurrent confidence intervals on 

the factor coefficients by the use of F and student-t distributions respectively. 



 

23 

2.4 Measures of Effectiveness 

2.4.1 Difference in Variance of Coefficients 

Between Arnold, Nozari, and Pegden (1984), Porta Nova and Wilson (1989), and the 

other researchers mentioned previously, many measures of effectiveness were investigated to 

capture the impact that the application of control variates had on their respective examples. 

Similar measures will be applied later in the thesis to measure the effectiveness of the control 

variates when combined with different optimal design matrices. The most direct measure used by 

Arnold, Nozari, and Pegden (1984) is the difference of the variance values. If the Var(    ) is 

less than the Var(β), then the benefit of control variates is easily seen. Nozari et al derives the 

formula for Var(    ) and Var(β) to be the following: 

           
     

       
                     

 

Equation 25 

Var(β)=                                                       Equation 26 

 

                              
     

       
              

           

       
                                     

Equation 27 

Because   needs to be greater than 0 to show improvement and 
     

       
 , the loss factor, 

will be greater than 1, there is potential for the Var(      to be greater than Var(β). However, as n 

increases towards infinity this value approaches 1 and therefore asymptotically it is better to 

apply control variates. Since an analyst usually does not have the resources to get a run size high 

enough to see this asymptotic effect, the selection of control variates is important so that the 

benefit of variance reduction is not counteracted by the loss of degrees of freedom when they are 

reallocated from estimating error to estimating the control variate values. Arnold, Nozari, and 
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Pegden (1984) describe that because 
       

     
 is the largest that 

  

  
 can be while still seeing 

benefit of control variates, the analyst can create a target for variance reduction by getting this 

estimate and ensuring that the variance reduction be greater than that. This value will be shown 

in several tables in the results section to show the required variance reduction that must occur for 

control variates to be beneficial. If 
  

   is not less than the required ratio, multiplying by the loss 

factor will create variance estimates larger than they would be without control variates. 

2.4.2 Expected Value of Square of Half-Width of Simultaneous Confidence Intervals 

The next measure of effectiveness used by Arnold, Nozari, and Pegden (1984), compares 

the expected value of the square of the half length of the simultaneous confidence intervals. 

Therefore, we can compare the effectiveness of the control variate by dividing the expected 

square of half length using the control variate by the same value when the control variate is 

ignored. Arnold, Nozari, and Pegden (1984) apply the theorem that                

     

       
        to assist in this transformation and get the simplified value of: 

 
  

    
          

 

        
   

     

       
        

  

  
   

          
 

        
        

     

       
   

Equation 28 

This measure of effectiveness also illustrates how applying control variates under certain 

circumstances may not be beneficial. But again, as n grows to infinity, 
          

 

        
   and 

     

       
  . Arnold, Nozari, and Pegden (1984) also describe an upper bound for this 
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technique because now 
  

  
 must be less than  

        
 

          
   

       

     
 . Because of this 

relationship, Arnold, Nozari, and Pegden (1984) suggest that their “results indicate that, from the 

set of all possible control variates, a maximum number of       control variates should be 

used.” However, because some of these equations were developed for only a single response, 

they may need to be modified when testing for simultaneous confidence intervals on multiple 

responses. Our experiments have a single response and we can therefore apply these measures 

with confidence. For more information on these techniques as well as the simple example on 

how additional control variates may not provide a better variance because of this relationship, 

please refer to Arnold, Nozari, and Pegden (1984). 

2.4.3 Variance Ratio and Loss Factor 

Porta Nova and Wilson (1989) expand the work done by Arnold, Nozari and Pegden 

(1984) to address conditions for multipopulation experiments with multiple responses. However, 

these require multiple replications for each design point. This replication may be part of the 

original experiment and have no impact on the overall cost and time of the experiment, while 

other scenarios do not have this replication built into the design due to constraints on cost, time, 

or resources, making this technique difficult. The first method is called the minimum variance 

ratio and was developed by Lavenberg et al (1982) then later used by Rubinstein and Marcus 

(1984) and Porta Nova and Wilson (1989). This compares the variance of the coefficients with 

the control variates to the variance of the coefficients without the control variates. If there is an 

improvement then the minimum variance ratio should be less than 1. Porta Nova and Wilson 

derive the equation for minimum variance ratio to be: 
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  Equation 29 

Where, 

v = min(m,q) 

  
    

      
    are the ordered eigenvalues of   

       
      

mj: 1 ≤ j ≤ v are the canonical correlations between Y and C 

 

However, because we must estimate these parameters, the minimum variance ratio is 

adjusted by the loss factor,      , to get the minimum variance ratio of the estimator,       

          . Porta Nova derives the loss factor to be: 

 

        
     

       
 

  

 

n = number of runs per replication 

m = number of replications 

p = number of factors 

q = number of control variates 

Equation 30 

Similar to previous methods, if the number of runs is large enough, n will approach infinity and 

the loss factor reduces to one. But when the number of runs is not extremely large, the inclusion 

of control variates will force the loss factor to be less than 1. 

Porta Nova and Wilson then extend the minimum variance ratio formula in Equation 29 

to the predicted variance ratio: 

                  Equation 31 

In the predicted variance ratio formula,       is the estimated minimum variance and       is 

again the loss factor of the simulation. The estimated minimum variance uses the same formula 

as the minimum variance ratio but uses the pooled estimator values for all variances to create the 

following formula: 
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Equation 32 

The predicted variance ratio there will hopefully be an accurate display of the improvement the 

control variates had on the simulation. This technique is an efficient way to measure the variance 

of the estimates, but due to the requirement of additional replications, could be too costly for 

many scenarios. 

2.4.4 Confidence Interval 

Confidence intervals for cases where more than one item is estimated at a time requires 

an adjustment to the confidence interval equation. Porta Nova and Wilson (Nov. 1989) introduce 

the Bonferroni inequality to show that multiple confidence regions must each have an individual 

  = (total  )/m for m concurrent confidence intervals, in the case of Porta Nova and Wilson m 

represents the number of different responses. However, as shown in Equation 23 and 

Montgomery (2009), m can also represent the total number of estimated half widths. In this 

research, all confidence intervals for the coefficients are two-sided and therefore m is equal to 2p 

where p is the number of factors in the model. Montgomery (2009) mentions the Bonferroni 

approach to be less accurate than the more complex oval method, but for the limited number of 

factors in this research it will be sufficient. 

2.4.5 Selection of Control Variates for Inclusion in Model 

As shown, selection of control variates is important towards seeing their optimal benefit. 

Nozari et al suggest two methods for finding the optimal combination of control variates that 

should be used in the actual prediction model. Because their implementation requires no 

additional runs, this analysis costs little to the analyst in terms of time and money. The first 

method is to construct the measure of efficacy for all combinations of control variates, while 
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limiting the total number to n – p – 1. This is an exhaustive method which will take time but will 

ensure the use of the best combination. The second method is a forward selection method. 

Because it is an algorithm it may reduce the computation time, but there is no guarantee that the 

optimal combination will be found. In this method, the measure of efficacy will be computed for 

each control variate individually. The best variate will be selected and the measure of efficacy 

will be computed for all pairs that include the first variate. The best pair is then chosen and the 

step is repeated with all combinations of three control variates that include the previously chosen 

pair. This is continued until a combination of n – p – 2 control variates are found, until all 

combinations of variates are exhausted, or until no improvement is found. The final combination 

should be applied to the model. These are but two of the multitude of possible control variate 

selection methods possible. We suggest these because of their efficacy in the previous analysis 

with control variates done by Arnold, Nozari, and Pegden (1984). 

2.4.6 Mean Square Error 

Mean square error is a common way to measure prediction accuracy. It provides the 

average squared difference between the predicted value and the actual value. Squaring the 

difference between the values weights the differences so greater variations have a larger effect as 

well as projecting negative and positive differences onto the same plane. This requires a true 

value to be known which can be difficult in some scenarios. However, when creating a 

metamodel of a simulation, there are times when the simulation can be run a very large number 

of replications to remove variation and create an average response approaching the simulated 

true value. The following formula will be used for response predictions     on the true value yi, 

across all n prediction points. 
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Mean Square Error =              
       Equation 33 

2.4.7 Prediction Half Width 

Predicting a future observation can be a very important function of a metamodel. This 

allows the analyst to gain knowledge of the scenario without rerunning the simulation. This 

reduces vital time and resources and allows the analyst to make future predictions. Because this 

accounts for error of the prior observations as well as future prediction, this interval is greater 

than the confidence interval on currently observed points. The following equation is used to 

create the prediction half width which will be used during the analysis of this thesis. 

                     
     

       
                     

   = the point estimate from model 

    = the variance estimate of the model 

   = the vector for the point of interest to be predicted 

  = the design matrix for the model 

Equation 34 

2.5 Analysis of Covariance 

A similar method to control variates is the implementation of analysis of covariance. A 

covariate is not the same as a control variate. This is implemented when a nuisance factor is 

uncontrollable. The factor is still measured on every run and then used to compensate its effect 

on the output variable (Montgomery D. , 2009). However it is typically applied to physical 

systems. Just like control variates, an adjustment is made on the observed output value in an 

attempt to get a more true response (Montgomery D. , 2009). However, in this case the mindset 

is to adjust the output so that the nuisance factor cannot inflate the response. Therefore, the 

significance test on the factors is more accurate as it removes potential interactions and influence 

from those nuisance factors. An appropriate statistical model involving a covariate would be: 
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                         Equation 35 

where 

   = the j th response under the i th treatment 

µ= overall mean 

  =effect of the ith treatment 

  =the linear regression coefficient for the covariate 

   =the measurement of the covariate corresponding to     (   th run) 

    =the mean for all     values 

   =the error associated with the true value of     and assumed to be normally distributed: (0, 2) 

It is easy to witness the similarities between this model and the model for control 

variates. As a run gets further from the mean, it has more of an impact on the output value. 

Similar to control variates, the implementation is fairly inexpensive and easy depending on the 

nuisance factor. For physical systems, it simply requires the monitoring of another factor. 

Depending on the factor this could be as easily as measuring the temperature that day to as 

difficult as measuring the instantaneous acceleration of particles. While this may be extensive in 

a few scenarios, there is usually the potential to monitor these extra areas with little effect on the 

overall test. In computer simulation scenarios this can be done at no cost in almost any case. By 

accounting for the effect of the covariate, we can more accurately judge the effect that the 

remaining factors have on the response. 

2.5.1 Comparison to Control Variates 

Although the analysis of covariance is very similar to control variates, they are different 

techniques that should be applied separately. This thesis has chosen to apply control variates 

because as we investigate metamodel simulations, the true mean values of the control variates 

will be known. In the analysis of covariance, the values for the covariates are compared to the 

sample mean. This sample mean may reflect the true mean, but due to the naturally occurring 

randomization of any situation, whether it is a computer simulation or real-world test, variance 
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from the true mean occurring because of the randomization will keep the metamodel from 

equaling its true value. As described by Montgomery (2009), analysis of covariance has a place 

in design of experiments and modeling, however, that place is not when the true mean value is 

known, because then the true value can be used to create a more accurate model.  

Because the analysis of covariance is based on concomitant variables that are compared 

to their sample mean, their coefficient values within the metamodel are used for future 

predictions. In comparison, the coefficient values for the covariate factors of control variates are 

removed from the metamodel. As discussed in the control variates section of this chapter, the 

expected value of the control variates is zero, making them non-biased estimators that can help 

create a metamodel with a smaller half-width on each coefficient if the control variate was 

indeed a helpful factor in reducing variance. 

2.5.2 Assumptions 

The assumptions for analysis of covariance models are the same as regression models and 

analysis of variance models (Quinn & Keough, 2001). The error terms from the fitted model 

found using analysis of covariance are assumed to be independently and normally distributed 

with similar variance between groups. By plotting residuals versus adjusted group means, the 

assumption of homogeneous variance can be easily checked for satisfaction of this requirement. 

Just like another regression model, nonhomogeneous variance can be corrected with 

transformations to the response. Other assumptions covered by Quinn and Keough (2001) 

include linearity between the factors and the response, covariate values are similar across groups, 

and the covariates are fixed variables. 
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2.5.3 Problems of Implementation 

According to Miller and Chapman (2001), analysis of covariance is often misused 

because the reviewers have no means of achieving the goal of correcting or controlling for real 

group differences on the concomitant variable. Another common problem with using analysis of 

covariance is when there is an interaction between the concomitant variable and the independent 

factors. This correlation should be low in order for analysis of covariance to be an effective tool 

(Tabachnick & Fidell, 1996). Without a plan from the beginning, many of these techniques fail 

to make a significant difference. They say it is often used in psychopathology research, but if it is 

misused it simply takes away from its potential in further research and development. In this 

thesis, control variates are chosen over analysis of covariance because of the known mean values 

for the control variates. Not having a goal can affect the use of control variates as well. In this 

case, we know the techniques that will used in order to investigate impacts on simulation 

metamodels. Therefore, we apply an optimal design to create a metamodel of a simulation that 

includes control variates in order to reduce variance on the prediction values, as well as the 

variance on the coefficients within the metamodel.  

2.6 Optimal Designs 

2.6.1 Overview 

A major part of creating an experiment or simulation is deciding on the structure of 

design the experiment will use. As mentioned previously, the variance for the coefficients is 

found with the equation          . While the control variates have an effect on reducing the 

value for   , the experimental designs will affect the output of         also influencing the 

coefficient and other outputs. The structure of the design will assist in finding the needed 
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information in the most accurate way possible (Montgomery D. , 2009). For example, some 

experiments allow the analyst to check defined points of interest based on the contract or 

physical constraints. When this is not the case, the analyst may have a much larger range of 

potential settings they are interested in, and this area is where design of experiments can be 

applied in order to get the most benefit from the limited information (Law, 2007). When 

resources and costs are not restricted a space filling design may be constructed. However, in the 

case of this research and many real world scenarios, there is a limit to the number of allowable 

runs making space filling designs impractical and optimal designs very appealing. In this 

scenario, the test team decides what alternative configurations as well as how they plan on 

evaluating and comparing the results. For this purpose, there are several universally popular 

designs such as full factorial designs or Latin square designs that can be applied (Montgomery D. 

, 2009). However, when funds and/or resources are limited it is not always feasible to do a full 

factorial design. In addition, as the number of factors increase the number of needed replications 

can quickly get out of hand. When there are restrictions within the experimental region that make 

full factorial designs infeasible, computer generated designs may also be helpful. For example, a 

limit on the sum of two factors or when a nonstandard model is being investigated, such as a 

quartic model or a response surface problem with categorical variables (Montgomery D. , 2009) 

are cases that benefit from computer generated designs. Optimal design theory has also been 

used effectively in developing polynomial models over irregularly shaped regions, such as 

mixture design problems (Montgomery, Peck, & Vining, 2006). For all of these cases, it is still 

important for the test team to decide what they are attempting to find out from the test. They 

should then decide on a test criterion for which the design will be evaluated. 
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2.6.2 Properties of Optimal Designs 

There are several different criterions on which designs can be evaluated. They are usually 

found with the help of a computer and therefore called computer-generated designs. For 

example, a design could be A-optimal, D-optimal, G-optimal, I-optimal, or V-optimal 

(Montgomery D. , 2009). Each of these criterions evaluate the design with a different metric and 

offer a different advantage to the test team. Some criteria will return the same optimal design as 

others, while others may create slightly different or even very different optimal designs 

depending on the criterion chosen (Montgomery D. , 2009). For example, the full factorial design 

is A, D, G, I, and V optimal for fitting the first-order model in k variables or with interaction, 

which is one reason it is so widely used in the testing world (Montgomery D. , 2009).  

These optimal criteria are used to achieve certain properties in the moment matrix M:  

  
   

 
 

Where X is as defined for Equation 10 and N is the total number of experimental design 

points 

These elements are important in determining the rotatability of the design (Myers & 

Montgomery, 2002). When the            depends on the distance from the center of the design 

and not its direction, then it is called a rotatable response surface design (Montgomery, Peck, & 

Vining, 2006). This is an important property of optimal designs because when solving for the 

design, the orientation of the points is often times unknown, and the distance from center, 

regardless of direction is what is used (Montgomery, Peck, & Vining, 2006). This makes all 

points equally important as long as they are the same distance from center. If the design is not 

rotatable then the estimates could be very different at different points within the design region 

(Montgomery, Peck, & Vining, 2006). 
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2.6.3 A-Optimal Design 

The A-optimal design criteria’s focus is to find a design that minimizes the individual 

variance of the regression coefficients (Montgomery D. , 2009). The variance of regression 

coefficient βi, i = 1… p is a function of the corresponding diagonal of the (X'X)
-1 

matrix. If we let 

H  = (X'X)
-1 

then the variance of a coefficient
 
βi, Var(βi) =  

2
Hii. Therefore, a design is 

considered A-optimal when it minimizes the sum of the main diagonal elements of (X'X)
-1

, or 

the trace of (X'X)
-1

 weighted by N (Montgomery D. , 2009). In relation to the moment matrix, 

M, this can be defined as the: 

                 Equation 36 

 

Where ζ is all potential designs (Myers & Montgomery, 2002). In other words, it 

minimizes the sum of variances of the regression coefficients (Montgomery D. , 2009). 

However, unlike the soon to be reviewed D-optimality, it does not account for the covariance 

among the coefficients. While A-optimal designs can be generated within some computer 

programs, it is not popular enough to be included in all software packages. 

2.6.4 D-Optimal Design 

D-optimal designs are typically the most common of the designs used that have an 

optimal design focus (Montgomery D. , 2009). A design is considered D-optimal when the 

determinant of (X'X)
-1

 is minimized, and specified using D because of evaluating the 

determinant (Montgomery D. , 2009).  Constructing a D-optimal design will minimize the 

volume of the joint confidence region on the vector of regression coefficients (Montgomery D. , 

2009). A simple way to compare two designs for this criterion is the following formula:  
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Equation 37 

Where X1 and X2 are the design matrices for the designs we would like to compare and p is the 

number of model parameters (Montgomery D. , 2009). D-optimality is great for variance-optimal 

designs in first-order and first-order with interaction models, however, as models get slightly 

more complex and moving to second-order designs, D-optimality can still be considered due to 

its simplicity (Myers & Montgomery, 2002). It has also been suggested that if additional runs are 

being conducted, the placement of these runs should move towards D-optimality (Montgomery, 

Peck, & Vining, 2006). One common problem with D-optimal designs is that they often consist 

of runs where the number of points is equal to the parameters, this makes model adequacy 

checking not possible (Montgomery, Peck, & Vining, 2006). Since it is the most widely used 

design for simple cases it can be easily constructed within popular software packages such as 

JMP, Design-Expert, and Minitab (Montgomery D. , 2009). 

2.6.5 G-Optimal Design 

While D-optimal designs may be the most widely used overall criterion, G-optimal 

criterion is the most popular when concerned with the prediction of the response and looking for 

a prediction variance criteria (Montgomery 2009). G-optimality occurs when the design 

minimizes the maximum scaled prediction variance, V(X), over the design region as follows: 

                     
          

  
         

Equation 38 

where N is the number of points in the design (Montgomery 2009). Another metric when using 

G-optimality is the G-efficiency of a design which is evaluated with the formula (Montgomery 

2009): 
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Equation 39 

G-optimal designs are extremely common and because                for two-level 

designs with a resolution greater than III and levels at ±1, the design will have an efficiency of 1 

and be G-optimal for first order models (Myers & Montgomery, 2002). 

2.6.6 I-Optimal Design 

I-optimal designs can also be referred to as the integrated, IV, or Q criterion, and can be 

easily constructed in JMP and other popular statistics software (Montgomery D. , 2009). They 

measure the design with a single performance statistic which is found by averaging the scaled 

prediction variance over some region of interest (Myers & Montgomery, 2002). These designs 

are evaluated with the following formula (Montgomery D. , 2009): 

   
 

 
                   

 

  

 

  

 

Equation 40 

By integrating over the entire region and dividing by the area of the region, we receive the 

average for the entire area. This criterion is considered optimal with 2k designs for fitting first-

order models as well as first order models that include interaction (Montgomery D. , 2009).  One 

of the reasons for the popularity of the I-optimal design is that it is easy to conceptualize the 

average prediction variance over a region (Myers & Montgomery, 2002). Comparing designs is 

similar to other criterion with the use of an efficiency equation. I efficiency can be found for 

design  * as (Myers & Montgomery, 2002): 

     
      

     
       

Equation 41 

Again, the I-optimal criterion is optimal for two-level first-order orthogonal designs with 

resolution greater than III and levels of ±1 (Myers and Montgomery 2002).  



 

38 

2.6.7 V-Optimal Design 

A more specific form of I-optimal designs are called V-optimal designs. These designs 

also focus on prediction variance but over a specific collection of points of interest rather than 

the entire design region (Montgomery D. , 2009). These points could be a candidate set by which 

the design was chosen, or simply a collection of points hand chosen by the test team because 

they find them specifically important (Montgomery D. , 2009). Regardless of the reason, the set 

of points are specifically chosen by the experimenter. The design is considered V-optimal when 

these pre-identified points have a minimum average prediction variance (Montgomery D. , 

2009). Because of the complexity of solving for these values, computer software is used often. 

2.6.8 Alias-Optimal Design 

An alias optimal design is concerned with limiting the effects of aliased terms. One 

disadvantage of the standard optimal designs previously mentioned is that it does not consider 

the aliasing between specific model terms and those that may be important but not included in 

the model (Jones & Nachtsheim, 2011). The alias matrix compares the matrix of model effects, 

X1, and the matrix of all aliased effects, X2, to create an aliasing matrix. 

         
        Equation 42 

The goal of the optimal design is to minimize the tr(AA'), or minimize the sum of the squared 

diagonal elements of A. This design criterion has the clear advantage of still being a better 

predictor if interactions are added later because there is much lower risk of them being aliased 

with another important factor. This allows the analyst to determine which factor or interaction is 

the true cause for changes to the response. 
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2.6.9 Problems with Optimal Designs 

As mentioned in many of these criteria methods, standard designs are optimal for first 

order and first order with interaction models. However, that is not always the model of interest in 

an experiment. Now it is important to remember that optimal design criteria evaluate the design 

on one area, but the analyst may be interested in a model that can perform well in several 

measures of efficacy. Therefore, the simple first order model with a standard design may be easy 

to think of but can quickly become poor in practice even though it was effective in theory. 

Standard response surface methodology designs are rarely optimal for second order models but 

they are constructed to achieve many desirable properties such as simplicity and still near 

optimal solutions (Myers & Montgomery, 2002).  

2.6.10 Solving for Optimal Design 

The optimal criterion values are often very difficult to find, hence one reason non-optimal 

designs are sometimes used. For this reason, computer software, with help from an algorithm, 

must be used to discover it. According to Douglas Montgomery (2009), a point exchange 

algorithm is very common. This algorithm takes an initial set of points chosen by the test team, 

and then exchanges points for alternative options in order to find an improved design 

(Montgomery D. , 2009). Although not every possible design is checked, this algorithm will still 

find a solution very close to the true optimal design. The coordinate exchange algorithm is 

another option for constructing the optimal design as described by Montgomery (2009). This 

algorithm takes the initial design and searches over each coordinate of the points until no 

improvement can be found (Montgomery D. , 2009). The initial design, unlike the point 

exchange algorithm, is randomly selected and run through multiple times to improve the chances 

of getting the optimal design.  
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2.6.11 Use of Optimal Designs with Metamodels 

Although these optimal designs, and their uses, are typically thought to be used on 

physical tests with limited funds, time, and/or resources, they can also be used in computer 

simulations. As computers become more powerful they are now being used to model even more 

complex systems which will still challenge the computing power of the computer itself. In these 

cases, minimizing the number of runs and making the most of the ones that occur can be very 

important when prediction power is important. Montgomery (2009) mentions factory planning, 

scheduling models, traffic flow simulators, and Monte Carlo simulations that sample probability 

distributions as examples of simulations that commonly employ optimal designs within their 

simulations to model a real-world process. Law (2007) mentions simulation based optimization 

being used to evaluate direct economic importance outputs such as profit or cost by testing all 

possible combinations of the input factors. He also lists emergency-room operations, automobile 

manufacturing, and management of a production-inventory system as potential applications for 

optimal simulations. A collection of authors list several other areas where optimal designs and 

simulation can be applied, such as, economic uncertainty and high speed civil transport vehicle 

(Bandte & Mavris, 1995); peace-keeping mission modeling (Johnson, Lampe, & Seichter, 2009); 

strength and accelerated life testing of a device (Chernoff, 1962); engineering and management 

science (Kleijnen J. P., 2005); combustion circuit design, controlled nuclear fusion device, plant 

ecology, and thermal energy storage (Mitchell, Sacks, Welch, & Wynn, 1989); and process or 

device design, simulator tuning, process control recipe generation, and statistical process or 

device design (Boning & Mozumder, 1994).  

As these systems get more complicated, the simple full factorial designs for first-order 

models are not as realistic. This is when a computer generated optimal design can become even 
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more helpful. Other helpful models that are used commonly throughout computer simulations 

include space-filling designs such as the latin hypercube design, and are popular because 

although they do not include replications, the design points are usually evenly spread throughout 

the design region (Montgomery D. , 2009). Uniform designs, Gaussian process models, and 

maximum entropy designs are also potential design options. Although, they will not be discussed 

in this paper, further information on these and other commonly used designs can be found in 

Montgomery (2009), Pronzato and Walter (1990), Mitchell et al (1989), and Boning and 

Mozumder (1994). 

Using design of experiments within simulations is a growing field. This is what Douglas 

Montgomery (2009) had to say on the area: 

“These experiments with computer models represent a relatively new and 

challenging area for both researchers and practitioners in RSM and in the broader 

engineering community. The use of well-designed experiments with engineering 

computer models for product design is potentially a very effective way to enhance 

the productivity of the engineering design and development community”  

In real world designs the test team must control factors or account for uncontrollable 

factors. The use of simulation allows the team to control everything and investigate the results. 

Even the variability can be accounted for by using random number generators, a simulation run 

can be replicated for additional information in the future (Law, 2007). While simulation allows 

for these uses, the additional application of design of experiments allows the test team to do so in 

the most efficient way possible, saving the organization time and money, while creating a better 

model. Since these models are constantly getting more complex, this savings and improvement is 

of gaining concern and software packages are being developed and used more frequently. These 
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packages are then interfaced with simulation programs to get the most out of the operating 

system. Law (2007) lists AutoStat, Extend Optimizer, OptQuest, SimRunner2, and WITNESS 

Optimizer as optimization programs that incorporate simulation software and can be researched 

separately for their differences, advantages, and disadvantages. However, what they all have in 

common is using simulations, and an extensive amount of computing power, to get results the 

user is interested in investigating. With the addition of design of experiments and control variates 

to a general simulation, both the results and computing time can be improved as will be shown in 

this paper. 

2.6.12 Potential Areas for Use of Control Variates 

There are several examples in literature on the application of DOE simulations that could 

potentially benefited from the use of control variates. Bandte and Mavris (1995) mention the 

need for 1000 to 10000 runs for a good representation of the probability distribution when 

applied to engineering analysis of a high speed civil transport vehicle. Control variates within the 

simulation could potentially reduce the variance of the results enough to reduce the runs without 

sacrificing the representation potential. Baesler et al (2003), use DOE for estimating the 

maximum capacity in a Chilean emergency room. Their process uses a simulation model of the 

emergency room, and values chosen by a design matrix to predict the behavior of the patient’s 

time in the system and the maximum possible demand that the system can handle. Although 

DOE was used to define the minimum number of physical and human resources required to serve 

these demands, the addition of control variates could potentially reduce the variance of the 

design even further. This could make the predictions more reliable by reducing the confidence 

interval and closing in on the true values. Johnson et al (2009), constructs a simulation of a 

refugee camp and uses a DOE test matrix to get potential outcomes from the simulation and limit 
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the options for settings within the simulation. In this case, control variates could take the known 

values in the system to receive more accurate results from each setting so the test matrix can zero 

in on the best values for the simulation with more confidence.  

These are hypothetical possibilities for the use of control variates and the only way to 

find out if they would actually help the system would be to implement them. However, since the 

cost of a control variate is free due to all the information already being known within the 

simulation, it is still something that can be investigating cheaply and easily. This is a tool that 

has yet to be used in these scenarios, or any of the listed areas where optimal designs can be 

applied. Although design of experiments and optimal design criteria has assisted in reducing 

variance and ensuring the results are exactly what the test team is concerned with, there is always 

the question of how to improve the test even further so that the results can have improved 

reliability with fewer replications and the additional use of control variates should be one step 

towards achieving this.  

2.7 Summary 

This literature review has covered the foundational material used in this thesis. The use of 

simulations to create metamodels for prediction purposes has been highlighted as they allow the 

analyst to further understand what is happening in a process, how things impact the process, and 

what may result from the process of interest. Optimal designs and control variates are two ways 

to increase the benefits of metamodeling even further by creating prediction models with lower 

variance and a better prediction. However, each step and technique must be fully understood and 

implemented correctly in order to achieve the necessary benefit. Control variates have been 

common in many areas to reduce prediction variance by comparing the relationship between a 
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known value and the actual value within the simulation run. Optimal designs are often used to 

investigate the design space as efficiently as possible. If interested, Table 4 shows where to 

conduct further research on a specific area of optimal designs. The next chapter, methodology, 

shows more specifically how both methods will be implemented on two simulations of interest 

so that potential results can then be evaluated effectively.  

Table 4: Table of sources for prior research in optimal designs. 

Authors Classifiers within Optimal Design Literature 

Uses of 

DOE 

Uses of 

Simulation 

Potential 

for CV 

Description 

of Designs 

Description 

of Optimal 

Criteria 

(Baesler, DaCosta, & Jahnsen, 

2003) 
X X X   

(Bandte & Mavris, 1995) X X X   

(Boning & Mozumder, 1994) X X  X  

(Chernoff, 1962) X     

(Johnson, Lampe, & Seichter, 

2009) 
X X X   

(Kelton, 2000)  X  X  

(Kleijnen J. P., 2005)  X   X 

(Law, 2007)  X  X X 

(Mitchell, Sacks, Welch, & 

Wynn, 1989) 
X X    

(Montgomery D. , 2009) X   X X 

(Myers & Montgomery, 2002)    X X 

(Montgomery, Peck, & 

Vining, 2006) 
    X 

(Pronzato & Walter, 1990)    X X 

This Thesis X X X X X 
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3. Methodology 

3.1 Chapter Overview 

This chapter covers the specific techniques used to combine control variates, optimal 

designs, and statistical analysis to more accurately and efficiently characterize a simulated 

process with a metamodel. Two simulation examples will be used to demonstrate the 

implementation of control variates. The first is an adaptation of an example used by Arnold, 

Nozari, and Pegden (1984) that examines the average waiting time of cars on a one-lane section 

of road. The second simulation was generated for the 618
th

 TACC to examine issues surrounding 

the time and personnel requirements for flight planning. Each simulation has several potential 

factors, distributions, and control variates which may be used to create the optimal designs and 

models used to predict the responses of interest. Several statistical measures are used to compare 

the effectiveness of the control variates with each design structure. I hypothesize that control 

variates will provide reduced variation and prediction error across all optimal designs. 

3.2 Description of Research Methodology or Approach 

Variance is a natural occurring part of any process. Simulations are becoming a more 

common way to model these scenarios and help account for this variance so the analyst has 

improved knowledge on what is occurring in the process. The ability to reduce variance for 

metamodels generated from simulation output will improve the prediction ability, and increase 

the overall understanding of the scenario. Control variates and optimal designs are two ways to 

achieve this goal. This research combines these two methods and investigates their impacts.  

As previously discussed, two simulations will be used to illustrate the benefits of 

employing these variance reduction techniques. Figure 1 illustrates graphically how the different 
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parts come together. The response, factor, and control variates for each simulation will be 

determined based on the analytical goals of the simulation. Subsequently the experimental design 

region will be determined and optimal designs will be created to more efficiently characterize the 

simulation output over the entire design region. Space filling designs may work great for these 

scenarios as well, but with this research has an interest in restricting the number of available 

runs. This restriction makes optimal designs more appealing than space filling designs. 

D, Alias, and I optimal designs used for the analysis will be constructed using JMP10. 

Provided the factors of interest, their constraints, number of runs, and the design criteria of 

interest; JMP returns a design optimal to the desired criteria. Although this is a difficult process 

by hand due to the complicated equations described in the methodology, JMP and other popular 

statistical programs can make it an easy process. 

Constraints are created to restrict the design region and put an emphasis on each optimal 

criterion. They are input into JMP along with the factors when creating the different designs. 

Constraining the design space will ensure different designs for each optimal criterion and force 

the program away from full factorial or half fractional designs. 

The designs will be run through the appropriate ARENA model using the ARENA 

Process Analyzer. The simulation output is then used to construct a second order metamodel. 

The designs and outputs are input in JMP to create the best possible model without considering 

control variates using the stepwise function. This is the process done by Arnold, Nozari, and 

Pegden (1984), Porta Nova and Wilson (Nov. 1989), and several others. However, due to the 

inclusion of control variates and the resulting reduction in variance, some additional factors may 

also become significant. Therefore, a new model will be created using the stepwise function to 

see if any additional factors are significant when control variates are included. This process will 
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be done for all experimental designs and responses. The significant metamodels are then used to 

calculate the coefficient half widths and variance estimates discussed in the literature review 

with the MATLAB code shown in Appendix A.  

These values are compared and speculation could be made about which models showed 

benefits from control variates and which did not. The next step will show whether that 

speculation can be supported when the models attempt to predict a number of random points. 

These points were randomly selected throughout the design region. Predicted mean square error 

is used to evaluate all models, while prediction half width and coverage will also be used to 

judge the efficacy of control variates. Again, comparing the performance of the models in the 

end, to what we knew about the model at the beginning allows us to develop recommendations 

on when control variates should be employed in real world scenarios and when their benefit may 

not be seen. 

Figure 1: Graphical representation of the parts of the simulation analysis  

Practical application of control variates will be highlighted by examining the model 

accuracy improvements using control variates to predict a random selection of points in the 

design region. Figure 1shows the requirements for constructing the models. Each design requires 

the factors, control variates, and constraints. This creates a model with and a model without 
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control variates, each of which used to predict the response of interest. Figure 2 shows how each 

model will be used to gain information on the response, as well as the measures used to compare 

the model with control variates and the model without control variates. 

3.3 Methodological Assumptions 

Many assumptions are inherent to the techniques used. Control variates require the 

assumption of joint normality between the control variates and the response. They also assume 

that each design has constant variance. This latter assumption is not as widely accepted and will 

be investigated slightly in the research. These assumptions were discussed in more detail in the 

previous literature review section, under control variate assumptions. Optimal designs also have 

their own set of assumptions. This includes knowledge of the design space is complete and 

reflective of the actual situation to be examined. General assumptions for this research also 

includes that all models are valid and reflective of their scenario, prior work which this is based 

on is correct, and the software used creates accurate distributions and calculations. 
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Figure 2: Graphical representation of the results for each design 
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3.4 Data 

3.4.1 Inputs 

The calculation of measures of effectiveness requires the design matrix, each control 

variate, and the responses as inputs in order to output the appropriate parameter measurements. 

The design matrix is a k by p+1 sized matrix where each design point is a separate row, and each 

column represents a factor or interaction to be included in the model as well as a column vector 

of ones to find the intercept. These will be the optimal designs found using JMP. Each control 

variate requires its own matrix. The response matrix is similar to a control variate matrix, where 

each entry represents the value from that run. 

3.4.2 Results Analysis 

Once the outputs for response and control variates are known, these values are used to 

calculate the statistical measures used to determine the efficacy of the designs. The statistical 

measures of effectiveness chosen include the variance estimate, coefficient values of the model, 

and the half width of the coefficients. For the TACC simulation, this also includes the half width 

and coverage of the prediction points. Equation 10,                 , is used to solve for the 

coefficients where G is the matrix for all designs points and the control variates of choice. 

Equation 23,   
    

                  
     

       
          

   , provides simultaneous half widths 

for factor j. A smaller half width is obviously desirable, but also is a smaller variance estimate. 

Equation 20Error! Reference source not found.,     
                   

         
, as well as the variance 

estimation equations involving degrees of freedom,         

       
 are employed as measures of 

efficacy. Clearly, a smaller value is desired. Although control variates should reduce the variance 
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estimate, the degrees of freedom lost in error estimation may do more damage when estimating 

the value than the help in variance reduction. This comparison will show whether the control 

variate is worthwhile across all four design structures. Calculation of these statistics is 

accomplished using MATLAB R 2012a. The script file to perform the calculations may be found 

in Appendix A. 

Once these inputs are in place and the code is run, MATLAB will then output a matrix 

for the variance, the coefficients, and the half width estimates for a model with no control 

variates and each possible combination of control variates. These matrices can be easily 

compared to see which combination of control variates, if any, offer a reduction in variance or 

half width.  

The coefficient values are then used as an input into Excel to create the prediction values 

of a number of randomly generated points within the design space. These points are found using 

Microsoft Excel’s random function to randomly pull a number between -1 and 1 for each factor. 

These points must also satisfy the constraints which were used to create the optimal designs. We 

do not want to attempt to predict a point that was infeasible when creating the optimal designs. 

Mean square error when predicting these points are used as a measure of the prediction accuracy 

of each model. In order to find the “true” value for each random point, the model was run 1500 

times at each random point. The average response of the 1500 runs is accepted as truth for that 

specific point in the design space. The models created will then be used to predict the random 

points. Equation 33, Mean Square Error =            
       , will be used for this calculation. 

Again, clearly a lower value for mean square error is more desirable as it shows the model is 

more accurate at predicting the true long term average at a design point. The TACC simulation 

will also examine the half width and coverage of the prediction points using Equation 34. Figure 
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3 gives a clear graphical representation of how the inputs and outputs are related with each 

software platform. 

If required this process could be done again with new designs, new factors, or using these 

outputs to adjust the inputs in an additional iteration. Those decisions will be made once the 

initial results are found but by collecting the data in the above mentioned manner, it will be 

easily available for further adjustments. 

Figure 3: Image depicting the inputs and outputs through the different software packages used. 

3.5 Limitations 

Limitations of this research exist as we do not investigate all potential applications, 

variations of the techniques, or simulations possible with control variates and optimal 
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experimental designs. Analytical assumptions made for this analysis have been stated throughout 

the methodology chapter. Insights gained are based on the use on only two simulations. Ideally 

these techniques would be combined and shown across a wide variety of scenarios. However, in 

this case I believe two different simulations are enough for initial investigation for potential 

benefits. The two simulations used will be fairly small compared to some extremely large scale 

simulations currently used. This will allow for easier manipulation for this research. Although it 

may not be as easy to see the benefit as simulations grow extremely large, the potential will be 

shown and the limited cost of implementation could prove it worthwhile.  

3.6 Research Design 

3.6.1 Traffic Lane Simulation 

3.6.1.1 Simulation Description 

The first simulation used in this research is a variation of the one used by Arnold, Nozari, 

and Pegden (1984). They title the example as “Single Lane Traffic Analysis.” It simulates a 500 

m section of road where the two-lane traffic flow, one lane in each direction, has been reduced to 

one lane due to construction or another barrier. There are traffic lights on each side where a 

green light obviously allows the cars to proceed down the single lane while a red light forces 

them to stop so the other direction can use the road, see Figure 4. Each side has a different 

interarrival time, both distributed exponentially. If a car has to stop it then acquires its own 

processing time.  
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Figure 4: Graphical view of the simulated roadway. 

A full cycle is where direction one, for descriptive purposes labeled the right side has a 

green light, then both sides are red to allow for the lane to clear, then direction two, labeled the 

left side has a green light, followed by another time period where both sides have a red light so 

the lane can clear. Again, when one lane has a green light to use the road, the opposite side has a 

red light.  

Arnold, Nozari, and Pegden analyze the waiting time of all cars using the time that the 

light remains green for each side as their factors, ranging from 50 to 70 seconds each. Their 

control variates are the interarrival time of each side, the right side being 9 seconds and left side 

being 12 seconds. The processing time is held to a constant 2 seconds per car that requires it, and 

the response is to be the average waiting time of all cars that use the road over a one hour long 

time period. Arnold, Nozari, and Pegden received results showing that the left side is an effective 

control variate, while the right side is ineffective and the combination of both sides is less 

effective. They also use a central composite design requiring 13 runs to get this information. As 

stated in the earlier literature review, central composite designs are optimal designs in the D, A, 

and I components. With only two factors it is easy to get a design that is optimal in multiple 

criteria. A table of design values used for this original simulation are listed in Table 5. 
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Table 5: Values used by Arnold, Nozari, and Pegden. 

Variable Value 

Response Average waiting time of all cars through the system in 1 hour. 

Factor 1: Green Left Low value of 50 Seconds High value of 70 Seconds 

Factor 2: Green Right Low value of 50 Seconds High value of 70 Seconds 

CV 1: Mean Interarrival Time Left 12 seconds 

CV2: Mean Interarrival Time Right 9 seconds 

Time the Light is Red for Both Sides 55 seconds 

3.6.1.2 Research Adaptation 

This research will reconstruct the scenario using the simulation environment ARENA and 

increase the number of factors and constraints so that the benefit of optimal designs can be 

investigated. This variation will show if any other factors should be included in the model while 

still investigating the impact of the same two control variates, interarrival time of the right side 

and interarrival time of the left side. 

As shown in Table 1, p represents the number of factors and q the number of control 

variates. The expanded experimental design will use the original factors of the time that the light 

is green from the right and left, but will also use as additional factors the amount of time it 

requires to process a waiting car from the left and right directions, and the length of time both 

lights are red for the roadway to clear. Using a screening process we found the following five 

interactions of interest and will be used in the models as well: Green Light Time Right and 

Processing Time Right, (Green Light Time Right)
2
, Green Light Time Right and Green Light 

Time Left, Green Light Time Left and Processing Time Right, and finally Processing Time Right 

and Red Light Time. These factors can be seen in Table 6. The control variates, q, will again be 

the interarrival time from the right and the left minus the mean interarrival time used in the 

respective exponential distribution. The total time for a cycle is used as a constraint on the 

factors by ensuring the sum of the green light time from both directions and the red light time is 



 

55 

within a specific interval. The response remains that used by Arnold, Nozari, and Pegden, the 

average waiting time of all cars that cross the single lane section of road over a one hour time 

period. 

3.6.1.3 Assumptions 

The traffic model includes several assumptions relating the model to the real world 

scenario. This includes the fact the model starts empty. This reflects the assumption that it 

models traffic becoming busy, similar to a midday road just before rush hour. I am also assuming 

that there is no difference between vehicle types. Semi-trucks and small cars have the same 

acceleration after being stopped. 

Table 6: The components of the simulation in this adaptation of the traffic simulation. 

Variable Value 

Response Average waiting time of all cars through the system in 1 

hour. (Measured in seconds) 

Factor 1: Green Left [50, 70] 

Factor 2: Green Right [50, 70] 

Factor 3: Processing Left [1.5, 2.25] 

Factor 4: Processing Right [1.5, 2.25] 

Factor 5: Red Light Time [45, 55] 

CV 1: Mean Interarrival Time Left 12 seconds 

CV2: Mean Interarrival Time Right 9 seconds 

Time the Light is Red for Both Sides 55 seconds 

Constraint -2 < Green Left + Green Right + Red Time < 2 

3.6.1.4 Procedures 

Using the factor levels shown in Table 6 for the overall design, JMP 10 was used to 

create optimal designs according to the D, I, and Alias criteria. The designs for each criterion and 

their corresponding efficiency measures, which are easily found using JMP, will be shown in the 

analysis section. These designs would be very difficult to compute by hand so the ease of use 

when computing them in JMP is a huge benefit. Due to the requirement for more runs than one 
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plus the total number of factors and control variates, a 16 run design was chosen in order to 

allow for estimation of interactions beyond the main 5 factors. A modified half fractional design 

will be used for comparison methods as well. In this 2
5-1

 design the red light factor is aliased 

with the interaction GreenLeft*GreenRight*ProcessLeft*ProcessRight. In order for it to also 

follow the constraints that were used to create the variance optimal designs, the 4 points that 

violated the constraints were replaced with 4 center points.  

Using Arena 13.9 a model depicting the scenario was created. The process analyzer tool 

allows the user to set up and run multiple replications with different parameters and then outputs 

the desired responses at the end of each replication. This tool is used to run all 16 design points 

easily while outputting the resulting response and control variate values for each individual run. 

The model can be seen in  

Figure 5 showing each individual node that makes up the complete simulation.  

 
Figure 5: Screenshot of the ARENA model used for the traffic simulation. 

3.6.2 618
th

 TACC Simulation 

3.6.2.1 Simulation Description 

This simulation is a real world example to investigate manpower requirements from the 

618
th

 TACC flight management division (XOCM). Data was provided by a subject matter expert 
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familiar with the unit and the process. Figure 6 is a flowchart for the flight planning process that 

the simulation is meant to capture. Each node is numbered and represents a process that someone 

at the unit must undertake. The unit is only interested in investigating the nodes which require a 

flight manager, the worker responsible for taking a sortie from the planning stage to take-off 

ready. Therefore the simulation is designed to capture nodes 7 to 23. The unit is comprised of 99 

individuals, working 1 out of the 3 shifts, each lasting 9 hours. Shifts are meant to overlap to 

assist with changeover briefs which last 30 minutes. Because these people are committed to their 

responsibilities, they will not leave while they are currently working on a sortie. They will finish 

the process before departing for the day. However, they do need their breaks, which last 10 

minutes and occur twice during their shift, as well as a 20 minute lunch break. While a flight 

manager’s primary duty is to organize a sortie, one flight manager during each shift will work as 

the phone person, or ATM. This person will spend approximately half their day working the 

phone, and the other half planning sorties like any other flight manager. Due to health concerns, 

the unit does not wish to not overwork their flight managers if at all possible, but they must also 

accomplish their mission and get the flight planning done in time for the sortie to be flown. The 

subject matter expert gave ranges for values as well as the general idea of their interest in 

sensitivity analysis. From there they gave us control on creating the actual specifics for this 

study. 

3.6.2.2 Responses 

The unit is mostly concerned with two separate responses. In order to keep their flight 

managers happy and avoid over-working them, they want to investigate their utilization rate. 

This will be the rate at which they are performing flight planning duties with a sortie compared 

to the total time they are scheduled for potential work. They believe being constantly pushed to 
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the edge would be undesirable and therefore would like to reduce the utilization rate of the flight 

managers.  

 

Figure 6: Flowchart for a single sortie. 

The second response of concern is the time the sortie is actually in the planning process. 

In order to keep the flight squadrons happy, they want the planning process to take as little time 

as possible so that the TACC is not the reason a sortie cannot be completed on time. Although 

some delays are out of the TACC’s control, they believe the processes listed in the simulation 

could be of interest.  
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3.6.2.3 Variables 

Several variables are considered by the TACC as potential factors that could be adjusted 

to achieve the desired responses. First, although the squadron size is defined, the number of 

flight managers working each shift can be adjusted. Therefore, the TACC is interested in the 

impact of scheduling between 21 and 23 flight managers per shift, not including the ATM flight 

manager.  

The second variable of interest is the number of sorties scheduled per day. From the 

information provided by the subject matter expert, the mean number of sorties ranges from 210 

to 240 and distributed normally with a standard deviation of 30 sorties.  

The third variable is the probability that a discrepancy is found after gathering the data to 

plan the sortie. This is node 9 on the flowchart. This probability ranges between 25% and 35%.  

The ATM flight manager is supposed to spend approximately half his day working the 

phone or other random tasks that take away from flight manager duties. Therefore, the TACC is 

concerned with the impact of adjusting this time to 40% to 60% of his day.  

The final variable of interest is the rate at which an in-flight discrepancy is found, node 

21. From information provided by the subject matter expert, we estimate that the probability of 

this occurring ranges from 35% to 40%. These factors are shown with the control variates and 

responses in Table 7. 

3.6.2.4 Control Variates 

There were several options for control variates in this system as many of the processes 

completed by the flight manager have an associated distribution provided by the subject matter 

expert and used in the simulation. However, there are 5 that are thought to be most correlated 

with the responses of interest. Because of the low cost of monitoring and applying control 
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variates, all potential variates could have been used just to see their impact but that was 

determined to be unnecessary. 

The first control variate is the average time it takes a flight manager to file flight plan 

with Air Traffic Control (ATC), node 13. The subject matter experts states that this process is 

exponentially distributed with a mean value of 15 minutes. Because taking longer at a single step 

means the process takes longer and the flight manager is busy longer, this process is thought to 

be connected to both responses. 

The second control variate is the average time it takes a flight manager to resolve an issue 

when they have the ability to do so, node 19. This process has a mean value of 17 minutes, 

exponentially distributed. With the same reasoning as the first control variate, this should be 

correlated to both responses 

 The next control variate measures the time it takes a flight manager to coordinate with the 

appropriate agency for clarification or coordination when a flight manager cannot resolve a 

discrepancy, node 22. This is provided by the subject matter expert as another exponentially 

distributed value with a mean of 20 minutes. Although this only occurs when discrepancies are 

found and the flight manager cannot resolve them, the increased time and standard deviation it 

takes to complete could impact both responses significantly. 

 The fourth control variate is the time it takes a flight manager to create the computer 

flight plan, link it to the planned sortie, and input flight planning in GDSS. Although this is 3 

separate steps, the subject matter would like it to be modeled as a single, exponentially 

distributed model with a mean value of 30 minutes. The increase time and variance within this 

process should impact both responses. 
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 The final control variate measures the probability of pre-departure mission disruptions 

and changes, node 17. This is modeled as occurring 35% of the time, however due to the 

variation of the simulation, it may occur more or less frequently than this. This difference will be 

tracked and used as a control variate. Because this process means a sortie goes through several 

additional steps or not, it could certainly have a large impact on both responses. This control 

variate, as well as the previous 4, can be seen in Table 7. 

3.6.2.5 Constraints 

Two constraints were created for the simulation. The first constraint deals with the 

probability of a discrepancy being found initially and the probability of an in-flight change. We 

believe that if one probability approaches its maximum value, then the other discrepancy will not 

approach its maximum probability. The opposite is also true, if one probability nears its 

minimum value, the impact on the other probability will keep it from approaching its minimum 

value. For this reason, this constraint is modeled that the sum of the probability of an initial 

discrepancy and twice the probability of an in-flight discrepancy be between 97 and 113. 

The second constraint involves the mean number of sorties per day and the adjustment 

made to the time the ATM flight manager spends away from flight manager duties. This 

constraint comes from the idea that on the days when sorties reach their maximum value, the 

ATM person will spend less time on the phone because they will be needed planning sorties. 

Also, on days when the number of sorties is low, the ATM flight manager will spend more time 

performing other duties. Because of the difference in units, this constraint is kept in coded space 

where each variable goes from -1 to 1. The sum of these two variables must then remain between 

-1.7 and 1.7. These constraints are shown in Table 8. 
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Table 7: Table of values used to create the simulation 

Variable Value Distribution 

Response 1 
Average Time in System for all 

Aircraft for a week in Minutes 
 

Response 2 
Average Utilization rate for all 

Flight Managers for a week 

Factor 1: Number of FMs per Shift [21, 23] Constant 

Factor 2: Mean Number of Sorties per Day [210, 240] Normal (  =30) 

Factor 3: Prob Discrepancy Found Initially [25%, 35%] Probability 

Factor 4: ATM Phone Time Adjustment [.8, 1.2] Constant 

Factor 5: Prob In-Flight 

Discrepancy/Change 
[35%, 40%] Probability 

CV 1: Mean Time to File Flight Plan 15 minutes Exponential 

CV 2: Mean Time for FM to Resolve Issue 17 minutes Exponential 

CV 3: Mean Time to Coordinate with 

Appropriate Agency 
20 minutes Exponential 

CV 4: Mean Time to Input Flight Plan Data 30 minutes Exponential 

CV 5: Prob of Pre-Departure Changes 35% Probability 

Changeover Brief 30 minutes Constant 

Mean Gather Data Time 20 minutes Exponential 

Mean Receive/Clarify Discrepancy w/ 

Agency Time 
20 minutes Exponential 

Requests Weather Permits 5 minutes Constant 

Coordinates with Aircrew 1 – 2 minutes Uniform 

Prob FM can Resolve Issue 30% Probability 
 

Table 8: Constraints used to Create Optimal Designs in Coded Space 

97 < Prob Discrepancy Found Initially+ 2*Prob In-Flight Disc < 113 (Natural Variables) 

-1.7 < Mean Number of Sorties per Day + ATM Phone Time Adjustment < 1.7 (Coded Variables) 

3.6.2.6 Assumptions 

The TACC simulation includes some assumptions that are similar to the traffic simulation 

in terms of dealing with the methods used to create and evaluate the system. However, the 

simulation also includes assumptions which were used to take the real world scenario to the 

simulation world. This includes the assumption that the changeover brief occurs for exactly 30 

minutes at the beginning of each shift for all workers and the required breaks can be taken at 
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once at the beginning of the shift rather than spread out throughout the day without impacting 

results because they are taken when the worker is not currently assigned an aircraft. We assume 

that all times and distributions provided by the 618
th

 TACC accurately represent the true system. 

The model also has the assumption that workers use a 24 hour rotation for a 5 day work week 

with no consideration for vacation time, work time, or other duties which are to be performed by 

the worker such as computer based training, fitness tests, etc. As previously discussed, the 

simulation forces flight managers to finish the aircraft they are working on before leaving for the 

day. Finally, because the ATM flight manager splits duties between managing the phone and 

typical flight manager duties, although the ratio may vary, the simulation assumes that he spends 

exactly the amount time determined by the design for that specific run. 

 3.6.2.7 Procedures 

The procedures for this simulation are very similar to those described in the earlier traffic 

simulation. Now that the response, variables, control variates, and constraints have been 

determined in Table 7, JMP can be used to create the 3 optimal experimental designs: D, I, and 

Alias. These designs will be used alongside a full factorial model which ignores the constraints. 

The designs will be run through the TACC ARENA simulation, shown in Figure 7, using the 

ARENA Process Analyzer. In addition to the processes used for the traffic simulation we 

examine the correlation between the response and control variate values. In addition, for the 

TACC simulation, a third model is created with control variates entered directly into the original 

model developed without control variates. The process of creating models will be conducted for 

all 4 designs and both responses, creating a total of 24 models. While each design will have a 

separate correlation matrix, 4 in total, each of the 24 models will have its own measures of 

efficacy of R
2
adjusted, significant coefficients, coefficient half widths, and variance estimates. 
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Figure 7: Screenshot of the ARENA model used for the TACC simulation. 
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For this simulation, calculating the prediction measures of effectiveness for each model 

will be performed with 25 random points. Predicted mean square error, prediction half width, 

and coverage will be used to judge the efficacy of these control variates. Again, comparing the 

performance of the models in the end, to what we knew about the model at the beginning allows 

us to develop recommendations on when control variates should be employed in real world 

scenarios and when their benefit may not be seen. 

3.7 Summary 

Two simulations will be used to demonstrate the benefits of control variates. Four 

experimental designs will be created, a variation of a half fraction, D-Optimal, I-Optimal, and 

Alias optimal. The simulation output for each design will be recorded and processed to create 

statistical measures to evaluate the potential benefits of both the experimental design and the 

variance reduction from using control variates. Each method has assumptions associated with it 

which if not true could impact the expected theoretical benefits gained by using these methods. 

This is clearly not an exhaustive use of the techniques as limitations exist. But again, it is a great 

start towards investigating the impact that control variates have on optimal designs and their use 

with evaluating simulations.  
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4. Analysis and Results 

4.1 Chapter Overview 

After the factors, control variates, and responses have been decided, the optimal designs 

have been found, the simulation has been created, and the simulation run to get results; these 

results must be analyzed to determine the effect of the techniques used. This section details what 

was found through this research and how it can be interpreted and used in the future. The traffic 

lane simulation and the Air Force flight management unit simulation are very different scenarios 

that both offer insight into the use of control variates and optimal designs for metamodeling. 

4.2 Traffic Lane Simulation 

The factors, control variates, constraints and response of interest listed in Table 6 were 

input into JMP to calculate a 16 run optimal design for each of the following criterion: D-

optimal, Alias optimal, and I-optimal. Combined with the half-fraction design described in the 

methodology, the four designs of interest shown in Table 9, Table 10,Table 11, and Table 12 

were created. Again this design used the initial design of all 4 factors and 4 interactions. As the 

results will show, this first model shows how control variates are not always effective. Because 

of the long queue length these control variates are ineffective, additional iterations of the model 

will show that the benefits of control variates are based on each individual case. 
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Table 9: Half Fraction Design 

 

GreenLeft GreenRIght ProcessL ProcessR RedTime 

-1 -1 -1 -1 1 

1 -1 -1 -1 -1 

-1 1 -1 -1 -1 

0 0 0 0 0 

0 0 0 0 0 

1 -1 1 -1 1 

-1 1 1 -1 1 

1 1 1 -1 -1 

0 0 0 0 0 

1 -1 -1 1 1 

-1 1 -1 1 1 

1 1 -1 1 -1 

-1 -1 1 1 1 

1 -1 1 1 -1 

-1 1 1 1 -1 

0 0 0 0 0 
 

 

 

Table 10: Design and efficiency values for D-Optimal Design 

D Efficiency 93.6321 
G Efficiency 96.7589 
A Efficiency 90.989 

Average Variance of Prediction 0.17463 
Design Creation Time (seconds) 5.07 

 

GreenLeft GreenRIght ProcessL ProcessR RedTime 

-1 -1 1 -1 1 

1 -1 -1 -1 1 

-1 0 -1 -1 -1 

-1 -1 -1 1 0 

1 1 -1 1 -1 

-1 1 1 -1 1 

1 1 1 1 -1 

1 -1 1 1 1 

-1 1 1 -1 -1 

1 1 -1 -1 -1 

-1 1 -1 1 1 

-1 1 1 1 1 

1 -1 1 -1 -1 

-1 -1 -1 1 0 

1 -1 1 1 -1 

1 0 -1 -1 1 
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Table 11: Design and efficiency values for I-Optimal Design 

D Efficiency 92.894 
G Efficiency 96.24581 
A Efficiency 91.94224 

Average Variance of Prediction 0.173285 
Design Creation Time (seconds) 5.85 

 

GreenLeft GreenRIght ProcessL ProcessR RedTime 

1 -1 -1 -1 -1 

1 0 -1 -1 1 

1 -1 1 1 -1 

-1 1 -1 -1 -1 

-1 1 -1 1 1 

-1 1 1 1 1 

-1 -1 -1 1 0 

-1 1 1 -1 -1 

1 1 -1 1 -1 

-1 -1 1 -1 1 

1 1 1 1 -1 

1 0 -1 -1 1 

0 1 1 -1 1 

0 -1 1 -1 -1 

-1 -1 -1 1 0 

1 -1 1 1 1 
 

 
Table 12: Design and efficiency values for Alias Optimal 

Design 

Alias Optimal Design 
D Efficiency 90.76591 
G Efficiency 92.02592 
A Efficiency 89.49007 

Average Variance of Prediction 0.1768 
Design Creation Time (seconds) 591.0167 

 

GreenLeft GreenRIght ProcessL ProcessR RedTime 

-1 -1 -1 1 0.1 

-1 -1 1 -1 1 

-1 -0.74 -1 1 -0.26 

-1 1 -1 -1 -1 

-1 1 -1 -1 1 

-1 1 1 1 -1 

-1 1 1 1 1 

-0.609 -0.432 1 -1 -0.959 

0.608 0.392 -1 1 1 

1 -1 -1 -1 -1 

1 -1 -1 -1 1 

1 -1 1 1 -1 

1 -1 1 1 1 

1 0.729 1 -1 0.271 

1 1 -1 1 -1 

1 1 1 -1 -0.1 
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Each row in these experimental design tables represents a different design input into the 

ARENA model with the columns containing the factor values unique for the design point. 

ARENA, with the help of Process Analyzer, provide as output the average waiting time, average 

interarrival time for the right side, and average interarrival time for the left side for each design 

point in the design. The output for the experimental designs can be found in Appendix B. 

 The process analyzer output and the design structures from JMP were then used to 

compute the measures of effectiveness with the MATLAB code in Appendix A. The variance 

estimate, coefficient values, and 90% confidence half width for each coefficient calculated by the 

MATLAB code are found in Table 13 and Table 14. 

The initial results of the traffic lane simulation were not as expected. I anticipated a clear 

benefit from at least one control variate in each design shown by Arnold, Nozari, and Pegden 

(1984). However, none of my four designs showed any improvement in variance estimation and 

half width due to control variates. The results for variance can be found in Table 13 with half-

width results found in Table 14. Column 2 of Table 13 is the variance estimate for each model. 

Column 3 is the variance estimate multiplied by the loss factor to calculate the adjusted variance 

of the coefficients. Column 4 shows the adjusted variance multiplied by the associated F statistic 

to calculate the squared half width of the coefficient confidence interval. These are shown 

because a small reduction in variance estimation may be insufficient to overcome the loss of 

degrees of freedom due to the need to estimate the covariance of the response and the control 

variates. 

As can be clearly seen in the Table 13, only one model showed a reduction in variance 

estimation once degrees of freedom were accounted for. The single exception is when control 

variate one was applied to the full factorial model. Although the initial variance estimate has  
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Table 13: Estimates of variance and measure of efficacy upon employing different control variates. 

 
        

     

       
 

Half Fractional   

No CV 653.9235 653.9235 

CV 1 489.3009 611.6261 

CV 2 637.4541 796.8176 

CV 1 and 2 495.6387 826.0644 

D - Optimal   

No CV 207.4824 207.4824 

CV 1 230.6051 288.2564 

CV 2 232.627 290.7838 

CV 1 and 2 282.5526 470.921 

Alias Optimal   

No CV 337.7144 337.7144 

CV 1 301.6191 377.0239 

CV 2 385.6535 482.0669 

CV 1 and 2 376.8746 628.1244 

I - Optimal   

No CV 47.01747 47.01747 

CV 1 43.46899 54.33623 

CV 2 48.97203 61.21504 

CV 1 and 2 53.86331 89.77218 

Column 1 Column 2 Column 3 Column 4 

been reduced in some cases, when the new variance estimate is used to estimate the variance or 

half width of the coefficient, the value would be larger using control variates than without them 

as seen in columns 3 and 4. The closest control variate to showing benefit was control variate 

one across all designs, the interarrival time of cars from the right. This trend can be seen in all 

optimal designs although not enough to make its inclusion in the model worthwhile. The 

reduction in variance was not enough to counteract the lost degrees of freedom for any of the 

optimal designs checked. As stated earlier not all control variates work effectively. However, the 

cost of adding these control variates and getting the data after the simulation run completed was 

so minimal that the potential for benefit as seen in the one design is still worthwhile. This also 
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shows that control variates affected each design the same. Although it did not show benefit in 

any of these designs, the trend that control variate one outperformed control variate two was 

universal and gives an analyst information that the interarrival time from the right has more 

correlation to the waiting time than does the interarrival time from the left. All of the optimal 

designs outperformed the half-fraction design when using variance as the measure of 

effectiveness with the I-optimal design achieving the lowest variance estimate. Clearly estimated 

variance also plays a part in the half-width on each model coefficient. These can be compared in 

Table 14 below, but only the no control variate model and the model including control variate 

one are used because control variate one already proved to be the best control variate option. As 

well as having the smallest variance estimate, the I-optimal design also has the smallest half-

width on the coefficients, followed by the half fraction and the D-optimal design. 

Table 14: 90% simultaneous half widths for each coefficient 

 Half-Width  

 Half Fraction D – Optimal Alias Optimal I - Optimal 

 No CV CV 1 No CV CV 1 No CV CV 1 No CV CV 1 

Intercept 51.555 49.860 44.075 54.531 63.978 70.956 33.829 38.173 

GL 36.455 35.256 17.224 21.310 19.56 21.696 11.941 13.475 

GR 36.455 35.256 16.555 20.482 20.547 22.788 8.5505 9.6485 

PR 36.455 35.256 16.000 19.795 18.584 20.611 8.5505 9.6485 

Red 29.765 28.786 20.424 25.269 21.425 23.762 9.6258 10.861 

GR*PR 36.455 35.256 16.555 20.482 20.812 23.082 8.5505 9.6485 

GR*GR 36.455 35.256 47.843 59.193 75.018 83.200 37.820 42.676 

GL*GR 60.453 58.466 19.011 23.521 23.318 25.862 13.39 15.119 

GL*PR 31.571 30.533 17.224 21.310 19.868 22.035 10.523 11.875 

PR*Red 36.455 35.256 20.424 25.269 24.193 26.832 14.031 15.833 

 The prediction power of each model is also used to measure the effects of control 

variates. Because the addition of control variates makes adjustments to the coefficients of the 

other factors, the use of control variates could potentially offer better prediction without a better 
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variance. Only the non-control variate model and the model using control variate one were used 

for the prediction methods. The interarrival time for the right side clearly outperformed the other 

control variate combinations making it the best one to explore. The randomized points and their 

results for prediction error can be found in Table 15. 

Table 15: Random prediction points and the prediction mean square error of each model. 

 GreenLeft GreenRIght ProcessL ProcessR RedTime True Response 

1) 0.255 -0.755 0.061 -0.927 0.629 73.215 

2) -0.725 0.602 -0.144 0.679 -0.733 68.389 

3) -0.083 0.035 -0.755 -0.839 0.694 72.72 

4) -0.209 -0.929 0.067 0.244 -0.815 72.054 

5) 0.074 0.034 0.893 -0.224 -0.294 70.77 

6) -0.499 -0.972 -0.693 0.599 -0.977 76.471 

7) -0.619 0.347 0.445 0.613 -0.692 69.466 

8) 0.336 -0.388 -0.725 0.619 0.579 90.896 

NO CV MSE CV1 MSE  

Half Fraction 331.451 Half Fraction 371.919 

D-Optimal 464.568 D-Optimal 424.860 

Alias-Optimal 123.309 Alias-Optimal 140.084 

I-Optimal 870.926 I-Optimal 969.459 

In this scenario the only control variate model to outperform its counterpart is the D-

optimal design. However, the alias optimal design presented the best prediction values as it 

shows the smallest mean square error. The I-Optimal design performs by far the worst of those 

tested even though it had the smallest variance estimate. This case shows only a single 

replication so some of the results could be due to bad luck, and randomly getting results that 

perform poorly. However, because these techniques are used when money and resources are 

limited, the number of runs and replications are also limited, this single run method is most like 

the actual application of the techniques.  
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4.2.1 Additional Models 

 Because the results were not as expected, I chose to investigate why and possibly modify 

the simulation and perform the analysis again to see what may come from slightly different 

parameters. Upon further inspection, the factors chosen created quite a large queue of cars 

waiting to use the roadway. We should have been more cautious of queue length sensitivities 

after these results. The effect of interarrival time would be considerably diminished when cars 

begin to wait so long that the difference in interarrival time from the mean is negated by the long 

wait. Although the interarrival time has some impact on causing the large queue, it is also the 

factors of the time the light is green, the processing time, and the red light time causing the queue 

to grow. When the factors create a system that cannot process as many cars in a cycle as the 

number of cars arriving into the cycle, there is no choice but for the queue to grow infinitely 

large.  

4.2.2 Model Modification 1 

Table 16: Values used for Modification 1. 

Variable Value 

Response Average waiting time of all cars through the system in 1 hour. 

Factor 1: Green Left [50, 70] 

Factor 2: Green Right [50, 70] 

 

Replication 1 Replication 2 

CV 1: Mean Interarrival 

Time Left 
12 seconds 

CV 1: Mean Processing 

Time Left 
2 seconds 

CV2: Mean Interarrival 

Time Right 
9 seconds 

CV2: Mean Processing 

Time Right 
2 seconds 

Time the Light is Red 

for Both Sides 
25 seconds 

Time the Light is Red 

for Both Sides 
60 seconds 

Therefore, to investigate the relationship between queue length and the control variates, 

the experiment was run again. The benefits of control variates can be specific to the design space 
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being investigated. Although a single simulation scenario may show no benefits, another 

application of control variates on the same simulation may be more beneficial. However, this 

time the red light time was held to a constant for each design, but changed from one design to 

another to compare the difference the shorter queue may have on the effect of control variates. 

Also, to investigate the impact of using interarrival time versus service time as the control 

variates, we reverted back to the original design presented by Arnold, Nozari, and Pegden. In 

their example only green light time from each side was used as a factor in a 13 run central 

composite design. The values for these replications of the design can be found in Table 16. Table 

17 shows the results of reducing the red light time to 25 seconds while using interarrival times as 

control variates, and then increasing red light time to 60 seconds while using processing time of 

each side as the two control variates. 

Table 17: Comparison of variance estimates when changing  

the control variate and the factor Red Light Time. 

Red Light = 25 Sec 

Control Variate = Interarrival Time 

Red Light = 60 Sec 

Control Variate = Processing Time 

                                            

No CV 9.743857 9.743857 No CV 357.0402 357.0402 

CV 1 1.573996 1.888795 CV 1 172.8528 207.4233 

CV 2 7.639409 9.167291 CV 2 406.4422 487.7306 

CV 1, 2 1.093835 1.640752 CV 1, 2 202.8868 304.3303 

This table clearly shows that the change in red light time affects the benefit of each 

control variate. A shorter time for the red light means the cycle is shorter and cars do not wait as 

long, limiting the chance of a long queue building up and making the interarrival time more 

correlated with the response and offers more benefit in reducing the variance. Inversely, the 

longer red light time forces cars to wait longer, increasing the chance of longer queues and 

making the benefit of using processing time as the control variate more clear.  
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This result highlights the importance of the earlier assumption of constant variance 

throughout the design. In our earlier designs red light time was a factor, and according to the 

assumptions for using control variates, there is a constant variance for all design points. 

However, this latest finding makes that a poor assumption because the covariance between the 

response and the control variate changed as the factors changed. This shows the importance of 

ensuring the assumptions are supported and true within every model and are considered when 

choosing factors for the design. Because the length of time that the light was red had an 

interaction effect on the control variate, the effectiveness of control variates were limited by our 

design space.  

4.2.3 Model Modification 2 

Table 18: Values used for Modification 2. 

Variable Value 

Response 
Average waiting time of all cars through the 

system in 1 hour. (Seconds) 

Factor 1: Green Left [45, 70] 

Factor 2: Green Right [55, 80] 

Factor 3: Interarrival Left [11, 13] 

Factor 4: Interarrival Right [9, 11] 

CV 1: Mean Processing Time Left 2 seconds 

CV2: Mean Processing Time Right 2 seconds 

Time the Light is Red for Both Sides 60 seconds 

Constraint 1 – Coded Space -1.8 < Green Right + Green Left < 1.8 

Constraint 2 – Coded Space -1.8 < Interarrival Right + Interarrival Left < 1.8 

Now that I have the knowledge that when red light time is high, 60 seconds, the 

processing time should be used as the control variate the original experiment will be redone. 

Again, exploring a different part of the space could results in different benefits from control 

variates. The first modification showed no benefits. But this modification uses the same 

simulation, just adjusting the factors of interest, and benefits may be more explicit. This 
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highlights the need for the control variates to correlate with the response, which can change from 

one scenario to the next. This variation will have the red light time set to a constant 60 seconds, 

the processing time from the right and left will be used as the two control variates, and the green 

light of each side as well as the interarrival time will be used as the four factors. Again, four 

designs will be constructed: full factorial (does not require constraints), D-optimal, Alias 

optimal, and I-optimal. Now that there are only four factors, the optimal designs will be 

constructed with twelve runs each and the new constraint that Green Time Right + Green Time 

Left rests within the coded interval of (-1.8, 1.8), as does the Interarrival Time of the Right side + 

the Interarrival Time of the Left side. These constraints eliminate part of the design space, 

forcing the optimal criteria design software to find the best way to allocate the design points to 

meet the design criteria in the constrained space. The values used for this modification are shown 

in Table 18. In this experiment, the prediction mean square error of each design will also 

increase from predicting eight points to predicting twenty. Another difference in this 

modification is that no predetermined model will be used. Rather, all eight models, four designs 

with a no control variate and a control variate model each, will be created using the JMP 

stepwise function. This will be done to recreate what an analyst would conclude if he were 

attempting to analyze the data when control variates were not available, and compare it to what 

he would conclude if the control variates were available.  

The results of this modification will be analyzed similar to the initial model. The variance 

estimates of each model will be compared. Then the factors and half-widths of each model can 

be compared to see what factors would be found insignificant because the variation explained by 

control variates is masking their importance. Then the prediction ability on the twenty points is 
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investigated to see if the model found using control variates can better predict random points in 

the design space.  

Table 19: Required variance reduction for future benefits in average waiting time of Modification 2 

Design Model # of Factors # of Control Variates 
       

     
 

Full Factorial 
No CV 4 0  

CV Always Available 9 1 (CV2) 0.83 

D – Optimal 
No CV 5 0  

CV Always Available 6 2 (CV 1 and 2) 0.60 

Alias Optimal 
No CV 5 0  

CV Always Available 7 1 (CV1) 0.75 

I – Optimal 
No CV 5 0  

CV Always Available 8 1 (CV1) 0.67 

4.2.3.1 Variance Results 

The simulation results were input into JMP and 8 models were created, 2 for each design 

structure. The number of factors and significant control variates, along with the largest value that 

  

   can be to see benefits of control variates, are shown in Table 19. The variance estimates for 

the model found using control variates is shown in Table 20. The     is the variance estimate 

while the third and fourth columns are adjusted for the number of control variates used to 

compute the variance and half width estimates. The decreased variance must not be 

overshadowed by the lost degrees of freedom from the additional number of variables. The 

results in Table 20 clearly show the benefits achievable using control variates. While the full 

factorial model shows the left side processing time to be the most beneficial, the D-Optimal 

design shows the use of both processing times to be the most beneficial use of control variates, 

and the I-Optimal models show processing time from the right to be the most beneficial control 

variate for variance estimation. The Alias Optimal model is constructed in JMP where the 
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processing time from the right is the most beneficial control variate, while the variance estimate 

shows the use of both control variates to be slightly better. This proves the importance of 

including all possible control variates. While one may seem important in this run, the 

randomness that comes with variation may prove it to be non-beneficial the next replication 

while another control variate shows important.  

Table 20: Variance estimates of the modified model upon employing different control variates 

 
        

     

       
 

Full Factorial   

No CV 815.6238 815.6238 

CV 1 915.9673 1068.628 

CV 2 157.2807 183.4942 

CV 1 and 2 142.885 200.039 

D - Optimal   

No CV 366.6149 366.6149 

CV 1 223.0362 278.7952 

CV 2 249.4987 311.8733 

CV 1 and 2 117.9199 196.5332 

Alias Optimal   

No CV 711.5371 711.5371 

CV 1 47.61876 71.42814 

CV 2 888.9834 1333.475 

CV 1 and 2 23.5704 70.7112 

I - Optimal   

No CV 922.3359 922.3359 

CV 1 11.52215 17.28322 

CV 2 567.7847 851.6771 

CV 1 and 2 8.022306 24.06692 

4.2.3.2 Factor Coefficient and Half-Width Results 

 Due to the fact that each design creates two models independently, they often showed 

different factors to be significant. This can be attributed to the fact that the occurrence of 

variation in processing time masks the significance of truly significant factors. When the control 

variates are used to account for some of the variance in the system, the true significance of each 

factor can be tested. Table 21 clearly shows the difference in factor inclusion across the different 
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models, where the coefficient listed shows also the presence of that factor. This table also shows 

the wide range that coefficient values can take even when they are included in different models.  

Table 22, shown below, displays the half-width for each coefficient significant to the 

model using the equation   

   
            

     

       
          

  
 . As can be seen in direct 

comparison, each control variate model has a smaller half-width on the common significant 

factors. The I-optimal design with control variates has a half-width better than the full factorial 

model even though the full factorial model used four more design points. 

Table 21: Coefficients for the terms included in each model 

 Coefficients  

 Full Factorial D – Optimal Alias Optimal I - Optimal 

 No CV CV No CV CV No CV CV No CV CV 

Intercept 102.092 102.293 -171.44 103.365 107.011 103.810 106.724 104.479 

GL  -5.291 0.269 5.767 -6.861 -3.166 14.550 19.636 

GR -8.471 -4.512  1.553 -2.206 6.326 -13.721 -27.566 

Arr L -11.625 -5.969 -6.431  -7.015 -2.468  -8.654 

Arr R -6.604 -7.853  -7.332  -17.270 -19.548 -16.721 

GL * GL   381.651      

GL * GR  -7.533  -9.191     

GL * Arr L  3.559   13.645 20.352   

GL * Arr R  -3.408     -7.977 -9.457 

GR * Arr L        7.476 

GR * Arr R  3.667  9.175  10.070  9.105 

 Arr L * Arr L   -113.09      

4.2.3.3 Prediction Results 

The prediction ability of a model is also of particular concern. As seen in the initial 

models, prediction was not improved by the use of control variates when they did not have a 

strong influence on the response. In this modification, the processing time for each side of cars 

has proven to have a strong relationship with the average waiting time of all cars in variance 

estimation and simultaneous coefficient half widths. To evaluate the prediction accuracy of the 

models, they are used to predict twenty random points in the design space. These twenty points  
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also satisfy the constraints used to create the optimal experimental designs. For these results, the 

process was used to create 4 prediction models of each design. The randomized points and the 

mean square error for each replication can be found in Table 23. In only 4 of the 16 replications 

did the model without control variates predict the points better than the model found using 

control variates. All four composite models, the models found using data from all four 

replications, showed a better prediction model using control variates for all design criteria. 

4.2.3.4 Model Adequacy 

There were many assumptions in using control variates and linear regression. A few of 

these discussed will now be checked and results compared. This will show whether these 

assumptions affect the benefit of control variates. These assumptions include constant covariance 

of the response and the control variates throughout the design, Constant residual variance across 

the prediction points, model specification, and the assumption of normality among the residuals. 

The first assumption of constant variance and covariance can be easily shown to not be 

true in this design by comparing the covariance matrix of 250 replications at several design  

Table 22: Half width for the terms included in each model 

Simultaneous Half Width 

 Full Factorial D – Optimal Alias Optimal I - Optimal 

 No CV CV No CV CV No CV CV No CV CV 

Intercept 9.606 7.285 415.178 14.395 23.748 21.685 26.847 6.514 

GL  7.285 14.385 15.108 23.907 21.794 28.592 7.154 

GR 9.606 7.285  15.753 27.522 25.903 29.748 7.323 

Arr L 9.606 7.285 17.446  25.315 22.841  7.587 

Arr R 9.606 7.285  15.892  23.721 28.642 6.992 

GL * GL   487.046      

GL * GR  7.285  16.539     

GL *Arr L  7.285   26.404 24.910   

GL * Arr R  7.285     31.300 7.604 

GR * Arr L        8.726 

GR * Arr R  7.285  17.368  26.554  7.981 

Arr L * Arr L   115.087      
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Table 23: List of randomized prediction points and prediction results. 

 GreenLeft GreenRIght InterArrival L InterArrival R 
True 

Response 

1) 45.696 76.902 11.849 10.737 101.974 

2) 46.014 66.972 12.872 10.250 87.133 

3) 46.401 67.132 12.112 9.629 91.772 

4) 49.744 71.635 12.977 10.438 85.118 

5) 50.537 70.985 12.659 9.103 88.274 

6) 51.803 73.166 12.801 10.531 85.256 

7) 53.712 72.993 11.238 9.962 92.305 

8) 54.738 74.966 12.535 9.319 87.484 

9) 55.104 56.995 12.643 10.780 85.8935 

10) 56.898 69.254 11.973 10.655 85.7335 

11) 58.371 77.741 12.980 9.409 86.5245 

12) 59.298 64.756 11.036 9.587 91.967 

13) 62.153 75.529 11.103 9.595 90.242 

14) 62.198 67.825 11.077 10.971 87.3845 

15) 63.122 72.502 11.592 10.308 87.524 

16) 65.762 66.807 12.448 10.736 86.273 

17) 67.806 77.639 11.001 10.172 89.344 

18) 67.889 56.061 11.781 10.025 97.9325 

19) 69.212 64.174 11.721 10.988 86.1845 

20) 69.539 75.524 11.867 10.028 88.4255 

Design MSE NO CV MSE w/ CV Difference % Change 

Full Factorial 

59.40 54.98 -4.41 -7.42% 

53.77 89.95 36.18 67.29% 

286.19 110.33 -175.87 -61.45% 

62.78 55.40 -7.38 -11.76% 

Full Factorial - Comp 70.74 56.98 -13.76 -19.45% 

D-Optimal 

45.64 51.93 6.29 13.78% 

71.47 52.90 -18.57 -25.98% 

71.85 53.50 -18.35 -25.54% 

116.48 71.86 -44.62 -38.31% 

D-Optimal - Comp 41.53 32.67 -8.86 -21.33% 

Alias Optimal 

111.76 78.47 -33.29 -29.79% 

63.22 74.11 10.89 17.23% 

87.69 75.54 -12.15 -13.86% 

73.59 45.88 -27.71 -37.65% 

Alias Optimal - Comp 136.42 40.31 -96.12 -70.46% 

I-Optimal 

82.73 28.83 -53.90 -65.15% 

102.97 94.29 -8.69 -8.44% 

151.75 63.99 -87.77 -57.84% 

79.67 128.61 48.95 61.44% 

I-Optimal - Comp 78.14 22.63 -55.51 -71.04% 

points. Table 24 shows the covariance matrix for 5 points throughout the design. It can be easily 

seen that the covariance between the response and the control variate 1 ranges from -.6372 to 3.1 
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and between -.55 and 3.116 for control variate 2. The covariance between the control variates 

and the variance of each control variate is fairly consistent. Meanwhile, the variance of the 

response ranges from 26.0953 to 7051.6076. These values clearly violate the assumption. 

An assumption when using linear regression is that the residuals from the model are 

constant across the range of prediction values. When investigating this assumption it appeared to 

have a funnel, which would violate this assumption. Therefore, a Box-Cox transformation was 

done on the model which adjusted the response of Y to    . This transformation also covers the 

fact that this is a first order model when a second order model may be more appropriate. 

Table 24: Covariance matrix for several points throughout the design 

GreenLeft GreenRight InterArr L InterArr R 
 

GreenLeft GreenRight InterArr L InterArr R 

-1 -1 1 1 
 

-1 1 -1 1 

         

 
WT CV1 CV2 

  
WT CV1 CV2 

WT 29.6943 
   

WT 6483.0363 
  

CV1 0.1950 0.0125 
  

CV1 -0.6372 0.0119 
 

CV2 0.1775 0.0001 0.0120 
 

CV2 3.1161 -0.0012 0.0137 

         
GreenLeft GreenRight InterArr L InterArr R 

 
GreenLeft GreenRight InterArr L InterArr R 

1 -1 -1 -1 
 

1 1 1 -1 

         

 
WT CV1 CV2 

  
WT CV1 CV2 

WT 7051.6076 
   

WT 26.0953 
  

CV1 3.1006 0.0095 
  

CV1 0.1512 0.0112 
 

CV2 -0.5500 -0.0001 0.0142 
 

CV2 0.1794 -0.0007 0.0141 

         
GreenLeft GreenRight InterArr L InterArr R 

     
0 0 0 0 

     

         

 
WT CV1 CV2 

     
WT 29.6943 

       
CV1 0.1950 0.0125 

      
CV2 0.1775 0.0001 0.0120 
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 However, after accomplishing the transformation and running the analysis again, the 

same results were found for variance reduction and prediction accuracy. Although a 

transformation was appropriate for the model, control variates displayed the same benefits with 

and without a transformation. 

 Another assumption mentioned earlier in this thesis is that the model is specified 

appropriately. While the transformation could make up for some of the need for a 2
nd

 order 

model, a face-centered central composite design was checked to ensure that this model would not 

change the benefits of control variates. After again running analysis using the model design, 

factors, control variates, and response, the same benefits were seen with this design. The 2
nd

 

order terms showed to be significant when creating the best model. But applying control variates 

could improve this model in both variance reduction and prediction even further. 

 A fourth assumption to check is the presence of outlier points. Because this scenario is 

based on the waiting time of a queue, there is potential for the queue to “blow up”. This is when 

more people arrive than can be physically processed by the system, causing the waiting time for 

the replication to get extremely large compared to the other replications. This occurrence would 

create a non-linear design space, making it very difficult to model with a linear regression model. 

This could also be the reason for the nonconstant covariance mentioned in the first assumption. 

In order to check the effect of these outliers new constraints were put on the design points where 

it seemed like the system was blowing up most often. This included the points (1, -1, 1, -1) and (-

1, 1, -1, 1) for the GreenLeft, GreenRight, ArrivalLeft, and ArrivalRight; respectively. There was 

also an adjustment that removed responses greater than 150 seconds as they appeared to be much 

greater than the mean of the other replications. These points appear to be problematic because 

they cause the queues to be unstable. This instability means the lights cannot process all of the 
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cars that arrive and wait times grow extremely large. The graph of responses then began to 

approach a more linear model. This constrained model was then replicated 250 times at each 

design point.  

While the previous optimal design and full factorial model showed no prediction benefit 

with control variates at 250 replications, these models included outlier points and design points 

causing nonconstant covariance. This constrained model removed these outlier design points and 

was analyzed similar to the previous models. The resulting model showed the benefit of control 

variates at only 1 replication all the way to 250 replications. As the number of replications 

increase the model should perform better than low replication models as there are more points to 

help create the model and therefore less variance remaining for the control variates to account 

for. 

The figures below show the benefit as the number of replications are increased from 1 to 

250. Figure 8 shows the benefit in variance reduction. The x-axis is the number of replications 

included in the model, while the y-axis shows the ratio of variance with no control variates 

divided by the variance with the control variate of interest. Therefore, the greater the value on the 

y-axis, the more benefit there is from using that control variate. Clearly there is a benefit of using 

both control variates or just control variate 1 throughout the entire space, while control variate 2 

may be nonbeneficial at the start, as replications are increased, the control variate become even 

more beneficial than control variate 1.  

Figure 9 shows the number of replications in the model on the x-axis while the y-axis 

shows the predicted mean square error. As replications increase they approach a similar result in 

mean square error. However, with less than about 150 replications it can be easily seen that using 
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both control variates returns the best prediction model, and using only one of either control 

variate creates a better prediction model than the model with no control variates accounted for. 

  
Figure 8: Variance benefit with constrained model. 

  
Figure 9: Prediction benefit with constrained model. 
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4.2.4 Summary 

The traffic lane simulation can be used to make plenty of important observations about 

the effectiveness of control variates and optimal designs. It highlighted the important of constant 

covariance between the response and control variates throughout the design space as well as how 

the buffer size can impact the benefit of a control variate. However, most importantly, it showed 

that control variates interact the same each optimal criterion but not all optimal designs perform 

the same overall. The control variates showed the same trends through each optimal design, the 

appearance of one control variate to be better than another. The I-Optimal design appeared to 

have the lowest variance estimation and smallest half width but performed the worst on actually 

predicting future values. Meanwhile, the alias-optimal design showed the greatest variance 

estimate and largest half width but performed the best in mean square error prediction. All 

methods showed a slight improvement in variance estimation with control variates but were not a 

large enough reduction to counteract the increased degrees of freedom. The most important thing 

from this research is that although the initial designs did not show a benefit from control variates, 

the cost of checking them was so small that it did not impede the progress of creating the model. 

In all four designs, the time and cost of tracking the control variate was nearly zero, so when the 

control variate is highly correlated with the response, it will be available. And when the 

correlation is not high enough to have a benefit, then the analyst spent no additional resources to 

ensure they had the best model possible. 

The modifications done to this simulation also highlight these conclusions even further. 

When a relationship can be established between the control variate and the response as seen in 

the processing time and the waiting time of a long queue, there is a clear benefit in terms of 

variance estimation, half-width minimization, and prediction error minimization. These are all 
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important parts of a meta-model and any improvement is certainly a worthwhile one. Because 

variation is the reason for the benefit, there is indeed fluctuation from one replication to the next, 

which shows the importance of accounting for all possible control variates. This case showed 

that the processing time of the left side proved to be the beneficial control variate, while other 

replications showed more benefit from the right side or the combination of both. In the end, a 

control variate model, regardless of the optimal design used to create it, outperformed its non 

control variate counterpart on a regular basis. 

4.3 618
th

 TACC Simulation 

4.3.1 Designs Created 

The 618
th

 TACC flight management division is concerned with the time it takes to plan a 

sortie and the utilization rate of their personnel. The variables, control variates, and constraints 

were input into JMP10, Table 25 to Table 28 show the designs that were found. Each design also 

includes 8 center points, making the total number of runs for the full factorial design, 40, while 

the optimal experimental designs are created with 30 runs. 

4.3.2 Correlation 

 These designs were input into the ARENA Process Analyzer and the response 

values and control variates for each run were collected. The results were analyzed to get the 

correlation matrix values listed in Table 29. This matrix shows that correlation values vary 

considerably. However, the correlation values appear to show that the response for the time a 

sortie is in the planning system is much more correlated to the control variates than the 

utilization rate is correlated to the control variates. This difference in correlation should make the 

time in system response benefit much more from the inclusion of these control variates than the 
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utilization rate. However, because of the limited time and cost, the control variates are applied to 

both responses. 

Table 25: Design for the Full Factorial TACC model 

Full Factorial 

Run # of FM # Sorties 
% Discrepancy 

Found Initially 

ATM Phone 

Time Adjust. 

In - Flight 

Discrepancy 

1 21 210 25 0.8 35 

2 23 210 25 0.8 35 

3 21 240 25 0.8 35 

4 23 240 25 0.8 35 

5 21 210 35 0.8 35 

6 23 210 35 0.8 35 

7 21 240 35 0.8 35 

8 23 240 35 0.8 35 

9 21 210 25 1.2 35 

10 23 210 25 1.2 35 

11 21 240 25 1.2 35 

12 23 240 25 1.2 35 

13 21 210 35 1.2 35 

14 23 210 35 1.2 35 

15 21 240 35 1.2 35 

16 23 240 35 1.2 35 

17 21 210 25 0.8 40 

18 23 210 25 0.8 40 

19 21 240 25 0.8 40 

20 23 240 25 0.8 40 

21 21 210 35 0.8 40 

22 23 210 35 0.8 40 

23 21 240 35 0.8 40 

24 23 240 35 0.8 40 

25 21 210 25 1.2 40 

26 23 210 25 1.2 40 

27 21 240 25 1.2 40 

28 23 240 25 1.2 40 

29 21 210 35 1.2 40 

30 23 210 35 1.2 40 

31 21 240 35 1.2 40 

32 23 240 35 1.2 40 

33 22 225 30 1 37.5 

34 22 225 30 1 37.5 

35 22 225 30 1 37.5 

36 22 225 30 1 37.5 

37 22 225 30 1 37.5 

38 22 225 30 1 37.5 

39 22 225 30 1 37.5 

40 22 225 30 1 37.5 
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Table 26: Design for the D - Optimal TACC model 

D – Optimal Design 

 

Run # of FM # Sorties 
% Discrepancy 

Found Initially 

ATM Phone 

Time Adjust. 

In - Flight 

Discrepancy 

1 21 210 25 1.2 40 

2 21 210 35 0.86 35 

3 21 210 35 1.2 39.5 

4 21 210 25 1.2 35.5 

5 21 214 25 0.8 40 

6 21 236 35 1.2 35 

7 21 240 25 1.14 40 

8 21 240 25 0.8 35.5 

9 21 240 25 1.14 35.5 

10 21 240 35 0.8 35 

11 21 240 35 0.8 39.5 

12 23 210 25 1.2 35.5 

13 23 210 25 0.86 40 

14 23 210 33 1.2 40 

15 23 210 35 1.2 35 

16 23 215 25 0.8 35.5 

17 23 214 35 0.8 39.5 

18 23 235 25 1.2 40 

19 23 240 25 1.14 35.5 

20 23 240 25 0.8 40 

21 23 240 35 0.8 35 

22 23 240 35 1.14 39.5 

23 22 225 30 1 37.5 

24 22 225 30 1 37.5 

25 22 225 30 1 37.5 

26 22 225 30 1 37.5 

27 22 225 30 1 37.5 

28 22 225 30 1 37.5 

29 22 225 30 1 37.5 

30 22 225 30 1 37.5 
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Table 27: Design for the I - Optimal TACC model 

I – Optimal Design 

 

Run # of FM # Sorties 
% Discrepancy 

Found Initially 

ATM Phone 

Time Adjust. 

In - Flight 

Discrepancy 

1 21 210 35 0.86 35 

2 21 210 35 1.2 39.5 

3 21 210 25 1.2 35.5 

4 21 210 25 0.854 40 

5 21 214 35 0.8 39.5 

6 21 215 25 0.8 35.5 

7 21 237 25 1.176 40 

8 21 238 35 1.17 35 

9 21 240 35 0.8 39.5 

10 21 240 25 0.8 35.5 

11 21 240 35 1.14 39.5 

12 23 210 25 0.86 35.5 

13 23 210 25 1.2 40 

14 23 210 35 1.2 35 

15 23 210 35 1.2 39.5 

16 23 214 33 0.8 40 

17 23 215 35 0.8 35 

18 23 236 25 1.2 35.5 

19 23 240 25 0.8 40 

20 23 240 25 1.14 35.5 

21 23 240 35 0.8 35 

22 23 240 35 1.14 39.5 

23 22 225 30 1 37.5 

24 22 225 30 1 37.5 

25 22 225 30 1 37.5 

26 22 225 30 1 37.5 

27 22 225 30 1 37.5 

28 22 225 30 1 37.5 

29 22 225 30 1 37.5 

30 22 225 30 1 37.5 
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Table 28: Design for the Alias Optimal TACC model 

Alias Optimal Design 

 

Run # of FM # Sorties 
% Discrepancy 

Found Initially 

ATM Phone 

Time Adjust. 

In - Flight 

Discrepancy 

1 21 210 25 1.2 40 

2 21 210 25 1.2 35.5 

3 21 210 35 1.2 35 

4 21 212 35 0.83 39.5 

5 21 215 25 0.8 35.5 

6 21 237 35 1.176 39.5 

7 21 240 25 1.146 40 

8 21 240 25 0.8 40 

9 21 240 27 1.14 35 

10 21 240 35 0.8 35 

11 23 210 25 0.86 40 

12 23 210 25 1.2 35.5 

13 23 210 35 0.86 35 

14 23 210 35 1.2 39.5 

15 23 211 25 0.848 35.5 

16 23 236 35 1.2 35 

17 23 235 25.8 1.2 40 

18 23 238 25 1.17 35.5 

19 23 240 25 0.8 35.5 

20 23 240 35 0.8 39.5 

21 23 240 25 0.8 40 

22 23 240 35 0.8 35 

23 22 225 30 1 37.5 

24 22 225 30 1 37.5 

25 22 225 30 1 37.5 

26 22 225 30 1 37.5 

27 22 225 30 1 37.5 

28 22 225 30 1 37.5 

29 22 225 30 1 37.5 

30 22 225 30 1 37.5 
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Table 29: Correlation values for all TACC designs 

Design CV Time in System Utilization Rate 

Full Factorial 

1 -0.24153 -0.00660 

2 0.27269 0.02230 

3 0.08567 0.06367 

4 0.60294 -0.04726 

5 0.20642 0.11163 

D – Optimal 

1 0.23003 -0.01175 

2 0.27282 0.41532 

3 -0.04193 0.08879 

4 0.13641 -0.05981 

5 0.45406 0.19884 

I – Optimal 

1 0.12229 0.05721 

2 -0.00533 -0.06984 

3 0.26723 0.08341 

4 -0.02952 -0.26197 

5 -0.13283 0.22310 

Alias Optimal 

1 0.10733 0.12050 

2 0.13517 0.14884 

3 0.00603 0.10400 

4 0.28774 0.03380 

5 0.63550 0.41689 

 4.3.3 Model Creation 

The next step is to develop 6 models for each design, 3 for each response. The first model 

is found using a stepwise function as if control variates were never tracked. This will represent 

the conclusions an analyst would make when ignoring control variates. The second model is the 

same as the first model, but significant control variates are added to the model. This approach 

mirrors previous research by Arnold, Nozari, and Pegden (1984) and Porta Nova and Wilson 

(Nov. 1989). The third model is found the same way as the first model, using the stepwise 

function. However, now the control variates are made available from the beginning. This 

represents what an analyst would conclude when tracking and applying control variates from the 

beginning. Additional factors may become significant or insignificant once control variates are 

added to the model.  
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4.3.4 Significant Factors 

 The coefficient values for the models created by JMP are shown in Table 30 for the time 

in system response and Table 31 for the models using utilization rate as a response. It can be 

easily seen by scanning the table that there are several cases for both responses where factors 

were added to the third model, when control variates were available for the stepwise function. 

However, it can also be seen that even simply adding the control variates, as seen in the second 

model, changes the value for each coefficient. This shows the impact control variates can have 

on a model. The change in coefficient means the model predicts a different value and is 

presenting the response surface slightly differently. The impact of additional significant factors 

can have a large impact on the metamodel. A factor, that was thought to have no impact on the 

response and was not accounted for, is now found to have an effect on the response and should 

be set to different values to account for this. 

4.3.5 R
2
adjusted Output  

The R
2
adjusted for all models is shown in Table 32. These values were computed by JMP when 

the model was found. An increase in R
2
adjusted shows a model that accounts for more of the 

variance while also accounting for an increase in the number of terms to do so. Inspection of 

these values mirror the results found from inspecting the correlation values. There is a larger 

increase in the models using control variates when time in system is the response of interest, than 

there is when utilization rate is the response. In 2 of the 4 cases for utilization rate, full factorial 

and I-optimal, simply adding control variates to the model found without them actually 

decreased the R
2
adjusted. Interestingly, they had the smallest correlation between control 

variates and utilization rate as shown in Table 29. This is a sign that the variance 
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Table 30: Coefficient values for each the significant figures in each TACC time in system model 

 
No CV CV Added to Initial CV Always Available 

 
Full D I Alias Full D I Alias Full D I Alias 

Intercept 148.57 148.51 149.49 149.30 148.19 148.09 148.87 148.38 148.21 147.56 148.89 148.25 

# of FM -0.31 
   

-0.09 
     

-0.19 
 

# Sorties 
         

-0.62 
  

% Discrepancy 

Found 
2.88 1.74 2.70 1.69 2.28 1.45 2.90 1.21 2.17 1.35 2.86 1.14 

ATM Phone 

Time 
0.03 1.23 

 
1.92 0.17 0.89 

 
0.83 

 
0.93 -0.41 0.60 

In - Flight 

Discrep. 
3.03 4.30 2.40 2.94 2.80 3.67 2.83 2.65 2.72 3.79 2.87 2.68 

NumFM 

*%DiscFnd 
0.94 

   
0.55 

       

NumFM * 

ATM 
1.14 

   
0.61 

     
0.63 

 

Sortie * 

%DiscFnd          
-0.91 

  

Sortie * ATM 
         

-1.23 
  

%Disc * ATM 
           

-0.84 

ATM * In 

Flight Disc  
1.14 

   
0.96 

      

 

Table 31: Coefficient values for each the significant figures in each TACC utilization rate model 

 
No CV CV Added to Initial CV Always Available 

 
Full D I Alias Full D I Alias Full D I Alias 

Intercept 0.865 0.866 0.858 0.869 0.865 0.869 0.855 0.870 0.865 0.869 0.861 0.870 

# of FM -0.041 -0.041 -0.036 -0.053 -0.041 -0.037 -0.036 -0.055 -0.041 -0.036 -0.041 -0.054 

# Sorties 0.055 0.051 0.050 0.069 0.055 0.051 0.049 0.072 0.055 0.051 0.050 0.070 

% Discrepancy 

Found  
0.009 

   
0.010 

   
0.010 0.002 0.000 

ATM Phone 

Time           
0.016 

 

In - Flight 

Discrep  
0.023 

   
0.022 

  
0.009 0.022 0.005 

 

NumFM * 

NumSortie    
-0.016 

   
-0.014 

   
-0.014 

NumFM * 

%DiscFnd  
0.011 

   
0.007 

   
0.007 

  

NumFM * 

ATM           
0.017 

 

Sortie * 

%DiscFnd          
0.004 

 
-0.015 

%Disc * In 

Flight Disc           
-0.018 
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explained by the control variates is not worth the extra terms needed to do so. Meanwhile, for the 

time in system response, adding control variates to the initial model showed improvement, and 

the final model also including the newly significant factors, the model’s R
2
adjusted increased 

even further. These are signs that the variance explained by the control variates is worth the 

increased degrees of freedom and the situation is a great candidate for the application of control 

variates. 

Table 32: R
2
adj values for each model and response 

Design Model 
R

2
adj for Time 

in System 

R
2
adj for 

Utilization Rate 

Full Factorial 

No CV 0.694 0.778 

CV Added to Initial 0.805 0.777 

CV Always Available 0.803 0.786 

D – Optimal 

No CV 0.760 0.803 

CV Added to Initial 0.849 0.835 

CV Always Available 0.875 0.842 

I – Optimal 

No CV 0.737 0.707 

CV Added to Initial 0.778 0.703 

CV Always Available 0.825 0.776 

Alias Optimal 

No CV 0.496 0.814 

CV Added to Initial 0.763 0.844 

CV Always Available 0.784 0.861 

 4.3.6 Minimum Variance Reduction Required 

Now that the number of factors and number of control variates for each model is known, 

the required reduction in variance can be calculated. Table 33 shows the number of factors and 

control variates included in each model predicting the time in system. Table 34 shows the 

number of factors and control variates included in each model predicting the utilization rate. The 

last column of each table shows the theoretical minimum ratio between the estimated variance 

and the true variance in order for control variates to have a benefit due to the increased number 

of factors. This is found by using the ratio of  
       

     
 which is the reciprocal of the values used 
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to estimate coefficient variance. Control variates were added to the model based on their p-value 

calculated by the stepwise function in JMP. 

Table 33: Required variance reduction for future benefits in Time in System 

Design Model # of Factors # of Control Variates 
       

     
 

Full Factorial 

No CV 6 0  

CV Added to Initial 6 3 0.909 

CV Always Available 2 3 0.919 

D – Optimal 

No CV 4 0  

CV Added to Initial 4 5 0.800 

CV Always Available 6 5 0.783 

I – Optimal 

No CV 2 0  

CV Added to Initial 2 2 0.926 

CV Always Available 5 2 0.917 

Alias Optimal 

No CV 3 0  

CV Added to Initial 3 3 0.885 

CV Always Available 4 3 0.880 

4.3.7 Variance Estimation and Coefficient Half Width 

The models found under the various selection criteria are then input into the MATLAB code to 

solve for the variance estimators and the half widths of the coefficient on each significant factor, 

as shown in Figure 3. All potential combinations are explored but the control variate 

combination creating the lowest variance, including loss factor, is the model chosen for further 

Table 34: Required variance reduction for future benefits in utilization rate 

Design Model # of Factors # of Control Variates 
Required Variance 

Reduction
 

Full Factorial 

No CV 2 0  

CV Added to Initial 2 1 0.973 

CV Always Available 3 1 0.972 

D – Optimal 

No CV 5 0  

CV Added to Initial 5 1 0.958 

CV Always Available 6 1 0.957 

I – Optimal 

No CV 2 0  

CV Added to Initial 2 1 0.963 

CV Always Available 7 1 0.955 

Alias Optimal 

No CV 3 0  

CV Added to Initial 3 1 0.962 

CV Always Available 5 1 0.958 
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comparisons. The half widths for the coefficients in each of these models are shown in Table 35 

for the time in system response and Table 37 for the utilization rate response. The benefit of 

control variates when predicting the time in system is clear. The half widths for each factor 

decreases from the initial model to the model with control variates added and even further 

improvement when other terms are allowed to enter the model after control variates are added. 

This is due to the decrease in the variance estimator found in Table 36. Column 4 contains the 

adjusted variance values used to estimate the half width. Although there is an increase in the loss 

factor because of the number of terms, the decrease in variance is large enough to still create a 

decrease in half width. 

The half widths for the utilization rate models, displayed in Table 37, do not show the same 

trend. While the D-optimal and Alias optimal models show a minimal improvement in half width 

when adding control variates to the initial model, and that same improvement in the final model, 

the full factorial design shows no change and the I-optimal models get worse when including 

control variates. This is again due to the variance estimations shown in Table 38. As the number 

of factors included in the model increase, the estimators for half width also increase. Although 

there may be a decrease in the initial variance estimate shown in column 2, it does not improve 

more than the value determined in Table 33 which is necessary for improvement. Column 4 

shows the variance once this change in the number of factors is included. There are some cases, 

such as the I-optimal model, where column 4 does show improvement however the half width 

does not. The increased number of significant factors from the final model also increases the half 

width. Due to solving for the simultaneous coefficient half width using the Bonferroni equation 

where   of each half width is  /(2p), increasing the number of factors also increases the half 
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width of the coefficients. This is mostly seen in evaluating the I-Optimal design. There is a slight 

increase in half width even though there is a decrease in variance. This is due to the effect of the 

Bonferroni simultaneous confidence interval accounting for an additional 3 factors. This can 

make it difficult to compare the half widths of equations with a different number of significant 

factors, but for the purpose of this research it is an accepted effect of the approach. In large part 

for the utilization rate model, the reduction in variance is minimal when using control variates. 

As seen from the low correlation and the limited increase in R
2
adjusted, this was expected. 

However, the change in coefficients and inclusion of additional factors may still assist in 

prediction ability to be seen in the next section. 

Table 35: Half width values for each the significant figures in each TACC time in system model 

 
Full Factorial D – Optimal I – Optimal Alias Optimal 

 
1 2 3 1 2 3 1 2 3 1 2 3 

Intercept 1.06 0.889 0.759 0.975 0.867 0.863 0.743 0.714 0.754 1.256 0.927 0.929 

# of FM 1.185 0.994 
      

0.882 
   

# Sorties 
     

1.084 
      

% Discrepancy 

Found 
1.185 0.994 0.849 1.176 1.046 1.03 0.883 0.848 0.895 1.507 1.112 1.114 

ATM Phone 

Time 
1.185 0.994 

 
1.226 1.091 1.102 

  
0.961 1.568 1.157 1.17 

In - Flight 

Discrep. 
1.185 0.994 0.849 1.249 1.112 1.1 0.968 0.931 0.984 1.599 1.18 1.184 

NumFM 

*%DiscFnd 
1.185 0.994 

          

NumFM * 

ATM 
1.185 0.994 

      
0.962 

   

Sortie * 

%DiscFnd      
1.095 

      

Sortie * ATM 
     

1.191 
      

%Disc * ATM 
    

  
      

1.192 

ATM * In 

Flight Disc    
1.345 1.970 

       

1. No CV Model   2. CVs added to initial model    3. CVs always available 
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Table 36: Variance estimates for each time in system model 

Design Model         
     

       
 

Full Factorial 

No CV 6.695 6.695 

CV Added to Initial 4.267 4.709 

CV Always Available 4.313 4.705 

D – Optimal 

No CV 4.532 4.532 

CV Added to Initial 2.842 3.590 

CV Always Available 2.347 3.037 

I – Optimal 

No CV 3.269 3.269 

CV Added to Initial 2.761 2.992 

CV Always Available 2.572 2.817 

Alias Optimal 

No CV 8.103 8.103 

CV Added to Initial 3.817 4.338 

CV Always Available 3.475 3.971 

 

Table 37: Half width values for each the significant figures in each TACC utilization model 

 
Full Factorial D – Optimal I – Optimal Alias Optimal 

 
1 2 3 1 2 3 1 2 3 1 2 3 

Intercept 0.012 0.012 0.012 0.012 0.011 0.011 0.013 0.014 0.015 0.015 0.014 0.015 

# of FM 0.013 0.013 0.014 0.014 0.013 0.013 0.016 0.016 0.017 0.017 0.016 0.017 

# Sorties 0.013 0.013 0.014 0.015 0.013 0.014 0.017 0.017 0.019 0.019 0.017 0.018 

% Discrepancy 

Found    
0.015 0.013 0.013 

  
0.017 

  
0.017 

ATM Phone 

Time         
0.019 

   

In - Flight 

Discrep.   
0.014 0.016 0.014 0.015 

  
0.019 

   

NumFM 

*%DiscFnd          
0.019 0.017 0.018 

NumFM * ATM 
   

0.015 0.013 0.013 
      

Sortie * 

%DiscFnd         
0.019 

   

Sortie * ATM 
     

0.014 
     

0.018 

%Disc * ATM 
        

0.020 
   

1. No CV Model   2. CVs added to initial model    3. CVs always available 
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Table 38: Variance estimates for each utilization rate model 

Design Model         
     

       
 

Full Factorial 

No CV 0.00108 0.00108 

CV Added to Initial 0.00109 0.00112 

CV Always Available 0.00104 0.00107 

D – Optimal 

No CV 0.00067 0.00067 

CV Added to Initial 0.00049 0.00051 

CV Always Available 0.00050 0.00052 

I – Optimal 

No CV 0.00106 0.00106 

CV Added to Initial 0.00108 0.00112 

CV Always Available 0.00081 0.00085 

Alias Optimal 

No CV 0.00116 0.00116 

CV Added to Initial 0.00097 0.00101 

CV Always Available 0.00088 0.00092 

 4.3.8 Prediction 

To empirically evaluate the prediction error of the different models 25 points were 

randomly selected throughout the design space. Each of the 3 models for each design was used to 

predict the “true” value of these points. The “true” value was found by running 1000 replications 

of the simulation at each point and accepting the average value to be true for this simulation. 

Table 39 shows the points that each model had to predict and the “true” response used for the 

prediction tests.  

As suspected from the apparent correlation, large increase in R
2
adjusted, and reduction in 

variance, the models including control variates performed better than the initial model for all 

designs predicting the time in system. However, despite very little correlation, minimal increase 

in R
2
adjusted, and minimal reduction in variance, the utilization rate had mixed results. Table 40 

shows the prediction improvement on the time in system response. In all designs, the prediction 

mean square error improved from the initial model to the model including control variates, and 

improved even further with the final model including all significant factors. The average 

prediction half width decreased for all 4 designs from the initial model to the same model 
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including control variates, and subsequently decreased even lower when additional significant 

factors were added. When coverage of the true point was considered, all designs showed 

identical or improved coverage between the initial model and the addition of control variates. 3 

of the 4 designs showed further improvement in coverage with the final model including all 

significant factors and control variates. The D-optimal designs decreased by only 4% or 1 of the 

25 points, but still outperformed the original model by 8%. 

Table 39: List of randomized points used for prediction 

Test Point 
Number 

of FMs 

Number 

of Sorties 

% Discrepancy 

Found 

ATM Phone 

Time 

In - Flight 

Discrep 

Time in 

System 

Utilization 

Rate 

1 21 236 28.6803 0.936937 37.61127 145.49 145.49 

2 21 212 34.3364 0.83507 35.06078 144.377 144.377 

3 21 237 32.45836 1.13687 38.29959 147.998 147.998 

4 21 228 33.98893 0.865414 37.01504 147.2 147.2 

5 23 228 34.07008 1.144877 38.39736 148.212 148.212 

6 23 237 29.16383 0.803442 35.56096 142.564 142.564 

7 23 211 28.9718 1.051563 37.37749 144.329 144.329 

8 22 215 30.02644 1.189094 35.45218 142.751 142.751 

9 23 212 31.67658 1.108621 36.26107 144.457 144.457 

10 21 231 32.37362 1.142462 37.62508 146.945 146.945 

11 22 221 27.11859 1.075708 38.0967 144.748 144.748 

12 23 220 27.25636 0.916032 35.068 141.215 141.215 

13 22 224 25.72297 0.970337 35.32215 140.71 140.71 

14 21 237 25.49866 1.039668 39.40799 146.289 146.289 

15 23 235 30.7843 0.966333 35.10044 142.71 142.71 

16 22 238 25.7521 1.097974 37.4833 143.667 143.667 

17 23 221 34.36918 0.969532 39.73972 149.628 149.628 

18 21 212 30.34866 1.049337 35.60402 143.151 143.151 

19 23 217 33.53375 1.199405 37.62996 146.66 146.66 

20 22 212 29.23848 1.197788 35.64385 142.678 142.678 

21 23 216 32.60025 1.094402 35.76085 144.022 144.022 

22 22 225 26.46997 1.161802 39.33959 146.272 146.272 

23 21 230 27.51717 1.113466 38.76618 146.099 146.099 

24 22 220 29.98879 1.198429 36.58488 144.237 144.237 

25 21 224 27.11833 1.127585 35.16185 141.544 141.544 
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Table 40: Prediction benefits for each Time in System model 

Design Model Prediction MSE 
Average Prediction 

Half Width 
Coverage 

Full 

Factorial 

No CV 11.441 4.594 88% 

CV Added to Initial 8.842 3.865 88% 

CV Always Available 8.376 3.758 100% 

D – Optimal No CV 11.492 3.825 60% 

 CV Added to Initial 8.534 3.441 72% 

 CV Always Available 7.665 3.221 68% 

I – Optimal No CV 18.137 3.193 8% 

 CV Added to Initial 12.540 3.064 24% 

 CV Always Available 12.043 2.892 28% 

Alias 

Optimal 
No CV 

21.230 5.084 64% 

 CV Added to Initial 11.493 3.739 64% 

 CV Always Available 10.318 3.599 64% 

Table 41 shows the same values of prediction mean square error, average prediction half 

width, and coverage for the prediction of utilization rate. The prediction mean square error only 

decreases for the Alias-optimal design in both of the models including control variates. The full 

factorial model with added control variates and additional significant factors and the I-Optimal 

model with only adding control variates also show a decrease in prediction mean square error 

compared to the original model. However, for all models the coverage is very good. 100% for all 

models including control variates, 96% for the original Alias Optimal model, and 100% the other 

3 original models. This coverage comes with a decrease of the half width in 3 of the 4 designs 

between the initial model and the final model, excluding the full factorial design. The full 

factorial and the I-Optimal models are the only models to show an increased half width when 

control variates are added to the original model. Both of which are increases of less than 3%. 

Although the estimates leading up to this step did not give it much promise on prediction ability, 

the addition of control variates to cover the true values was on pace with the initial model with a 

reduced half width even though the actual prediction error was slightly larger. In this case the 
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initial model may already be so good that predicting the “true” value any better is very unlikely, 

but control variates can still offer a slight decrease in half width and still cover the “true” value. 

4.3.9 Summary 

Table 42 and Table 43 give a view at the percent change for all measures used in this section on 

the time in system response and the utilization response, respectively. As seen throughout the 

time in system results in Table 42, the large correlation between the control variates and the time 

a sortie spends being processed gave promise towards their potential benefit. This was reinforced 

by a large increase in R
2
adjusted when the models were developed. The inclusion of control 

variates and additional factors meant the variance reduction must be even greater in order for it 

to result in a decreased half width on the coefficients. However, the variance estimators showed 

that this was not a problem. With correlation, an increase in explained variance, additional 

significant factors, and decreased coefficient half width, control variates had already offered 

many benefits towards this use in exploring this response surface. It proved even more important 

when all 4 designs showed improved prediction mean square error, reduced prediction half 

Table 41: Prediction benefits for each utilization rate model 

Design Model Prediction MSE 
Average Prediction 

Half Width 
Coverage 

Full 

Factorial 

No CV 0.00050 0.0572 100% 

CV Added to Initial 0.00052 0.0582 100% 

CV Always Available 0.00039 0.0573 100% 

D – Optimal 

No CV 0.00036 0.0472 100% 

CV Added to Initial 0.00042 0.0414 100% 

CV Always Available 0.00041 0.0402 100% 

I – Optimal 

No CV 0.00030 0.0579 100% 

CV Added to Initial 0.00022 0.0595 100% 

CV Always Available 0.00064 0.0545 100% 

Alias 

Optimal 

No CV 0.00105 0.0611 96% 

CV Added to Initial 0.00080 0.0571 100% 

CV Always Available 0.00099 0.0570 100% 
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width, and increased coverage when control variates were applied. This is a clear example when 

start to finish the benefits are clear. 

The utilization rate response was not as clear. Although the correlation was small and 

there was only a slight increase in R
2
adjusted, giving little promise for their benefit, we 

continued to apply the technique to investigate the results. After seeing mixed results on variance 

estimation and coefficient half width, we still saw a benefit in prediction. Nearly all of the 

designs showed a decreased half width and identical coverage. Because of the low cost and 

limited resources required to implement control variates, it would carry little to no cost to carry 

out these steps with control variates as they would be done without control variates anyways. 

Some of these benefits were also masked by the magnitude of the utilization rate. The percent 

change puts these benefits in a better light. This shows that even a small amount of correlation 

can lead to a small increase in variance explanation, and a marginal decrease in half width. 

However, because of the low cost of the technique, it can pay off in the end when the prediction 

half width still decreases and coverage is not compromised. 
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Table 42: Percent change for each Time in System model compared to the no CV model 

Design Model R2adj 

Intercept 

Coefficient 

HalfWidth 

TauSq* 

Loss 

Factor 

Prediction 

MSE 
Coverage 

Average 

Prediction 

Halfwidth 

Full 

Factorial 

CV Added to 

Initial 
16.01% -16.14% -28.96% -22.72% 0.00% -15.88% 

CV Always 

Available 
15.71% -28.41% -29.93% -26.79% 13.64% -18.19% 

D – 

Optimal 

CV Added to 

Initial 
11.79% -11.00% -18.15% -25.74% 20.00% -10.05% 

CV Always 

Available 
16.68% -11.41% -29.49% -33.31% 13.33% -15.80% 

I – Optimal 

CV Added to 

Initial 
5.54% -3.90% -7.60% -30.86% 200.00% -4.05% 

CV Always 

Available 
12.67% 1.38% -11.44% -33.60% 250.00% -9.44% 

Alias 

Optimal 

CV Added to 

Initial 
53.69% -26.19% -45.58% -45.87% 0.00% -26.45% 

CV Always 

Available 
41.48% -26.01% -49.85% -51.40% 0.00% -29.22% 

 

Table 43: Percent change for each Utilization Rate model compared to the no CV model 

Design Model R2adj 
Intercept 

HalfWidth 

TauSq* 

Loss 

Factor 

Prediction 

MSE 
Coverage 

Average 

Prediction 

Halfwidth 

Full 

Factorial 

CV Added to 

Initial 
-0.19% 1.87% 3.79% 3.42% 0.00% 1.83% 

CV Always 

Available 
1.15% 5.48% -0.42% -22.60% 0.00% 0.29% 

D – Optimal 

CV Added to 

Initial 
3.91% -12.29% -23.16% 16.09% 0.00% -12.43% 

CV Always 

Available 
5.58% -8.54% -20.89% 11.99% 0.00% -14.96% 

I – Optimal 

CV Added to 

Initial 
-0.54% 2.88% 5.85% -25.81% 0.00% 2.80% 

CV Always 

Available 
10.01% 9.96% -17.02% 116.23% 0.00% -5.82% 

Alias 

Optimal 

CV Added to 

Initial 
3.71% -6.54% -12.68% -24.03% 4.17% -6.57% 

CV Always 

Available 
6.74% -2.43% -19.65% -5.91% 4.17% -6.84% 
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5. Conclusions and Recommendations 

5.1 Chapter Overview 

Control variates are an effective technique to reduce variance in metamodeling. This is 

true in many different scenarios, designs, and applications. However, as with any technique, the 

use of control variates has its own restrictions. The literature review of chapter 2 described 

previous research in control variates including the derivation behind their use, applications, 

assumptions, sources, and some alternative options. The literature review also covers 

metmodeling, measures of effectiveness, optimal experimental designs and analysis of 

covariance. All of these areas are used to show the benefits of control variates to an analyst 

attempting to explore the response surface of a simulation and make decisions based on the 

results. Control variates have been previously used by Arnold, Nozari, and Pegden (1984) on a 

single design, with multiple factors and multiple control variates, to gain knowledge on a single 

response when those control variates were added to a design. This thesis took this scenario and 

its known benefit and expanded it to multiple designs, multiple responses, and the addition of 

supplemental significant factors after control variates were added.  

Chapter 3 covers the methodology used in this thesis. A combination of computer 

programming and analysis leads to conclusions on the application of control variates. JMP is 

used to create optimal experimental designs and the significant models. ARENA is used to run a 

simulation of the scenario we are exploring to get results of each design. MATLAB is used to 

analyze the results and create several of the measures of efficacy used for the results. These 

programs are used together to create outputs such as the R
2
adjusted, correlation, mean square 

error variance estimation of the model, prediction mean square error, and prediction half width. 

These measures are used to analysis the benefit of control variates on metamodels. 
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Chapter 4 summarizes the results found from the traffic light and 618
th

 TACC 

simulations. The traffic light simulation initially showed no significant benefits due to the 

parameters and factors of the simulations and designs. However, additional iterations of similar 

simulations showed the benefit of control variates when they are used to answer the right 

questions on the right simulations. The 618
th

 TACC simulation used two responses with the same 

factors and control variates. This simulation highlighted the fact that the benefit of control 

variates is dependent on the relationship between the control variate and the response the analyst 

is interested in exploring. 

5.2 Conclusions of Research 

The conclusions of the research showed clear benefits from the use of control variates. 

The traffic light simulation highlighted the impact queue length can have on the effectiveness of 

a service time control variate compared to an interarrival control variate. The additional models 

took this into account showing control variates to be beneficial when the correct control variate 

was used on the right design space. Not all responses will benefit from the same control variates, 

and in this case the time in system saw significant benefits from the application of control 

variates, while the utilization rate saw limited benefit. However, both showed that control 

variates can be applied with limited cost, time, and resources and decisions can be made later on 

whether or not to use them without any adverse impact on the analysis.  

Control variates can be applied to a wide range of scenarios. As simulations get larger 

and more complex there are even more candidates for control variates. However, as stated by 

Arnold, Nozari, and Pegden (1984) it is important to remember that although using all 

possibilities, the number of control variates should be limited to less than n – p – 2.  These two 
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examples simply show what to look for and what to expect when applying the technique for 

variance reduction and prediction involved with metamodeling. Control variates can be added to 

a simulation with very little effort. When the simulation has been completed, correlation can be 

checked between the control variate output and the response of interest. While this is not a 

binding constraint, higher correlations give higher promise of the possible future benefit. For 

example, the TACC simulation had control variates with correlation factors as low as .006 found 

to be significant when creating a metamodel. While another control variate had a correlation of 

.417 with the utilization rate which was not significant or beneficial. Meanwhile, the majority of 

significant control variates were greater than .2.  

The R
2
adjusted value of a model can also show the present and future impact of control 

variates. An increase in this value from the inclusion of control variates means the control 

variates explain more variance even when the decrease in error degrees of freedom is accounted 

for. As shown in all of the TACC time in system models, including control variates increased the 

R
2
adjusted, and increased even further in 3 of the 4 designs when the significant factors were 

reexamined and the model adjusted. These trends are reflected in the prediction results. All of 

these models showing an increase in R
2
adjusted lead to a decrease from the initial model in 

prediction mean square error and prediction half width. The R
2
adjusted is also a great predictor 

of the benefit from the variance estimate. The measure of efficacy used for a coefficient half 

width reflects the trends of the R
2
adjusted. There is a decrease from the initial model when 

control variates are added and further decrease when the significant factors are then adjusted. 

The only model to show a decrease from the second to third model also shows the smallest 

decrease in estimated variance.  
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When looking at the utilization rate of the TACC model, the 2 models that showed an 

increase in R
2
adjusted when control variates were added showed the greatest decrease in 

variance estimation and the largest decrease in prediction half width. While all the models with 

control variates and all significant factors, model 3, showed an increase in R
2
adjusted and a 

subsequent reduction in variance estimate and in prediction half width. 

Control variates can offer several benefits to an analyst working with metamodeling. 

They can increase the R
2
adjusted of a model, reduce the variance, reduce the coefficient half 

width, reduce the prediction half width, decrease the prediction mean square error, and increase 

the prediction coverage. However, this is when they are used properly in the correct situations. 

Due to their minimal cost of time and resources, any simulation with a theoretical correlation 

between the programmed values and the response should be checked for their impact. If the 

analyst sees high correlation values after the simulation has completed he should certainly 

include them in further steps. However, including them in a model can take almost no additional 

time and could be checked to be sure. If there is an increase in R
2
adjusted, and additional factors 

become significant when the control variate is added, control variates should certainly be 

included in the model. This can then lead to decreased variance and half widths and a much 

improved metamodel. Both the model without control variates and the model with control 

variates could still be checked further if the analyst is not sure. Calculating the variance and 

coefficient half widths is an easy process to then again directly compare the two as done in this 

research. This comparison can easily show the benefits of control variates.  

This research shows control variates can be applied to several different designs of the 

same simulation. While each design was constructed using different criteria and showed slightly 

different results, the potential benefit was still existent in each design. A design may be 
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constructed to reduce the variance or increase the prediction ability. However, control variates 

can benefit the model in both of these areas even further as can be seen in the TACC designs for 

the time in system response. 

5.3 Significance of Research 

This research can be very significant to analysts working on creating a metamodel from a 

simulation and concerned with variance and prediction. This research supports the idea that 

regardless of the model used, if there is unexplained variance in the model, it could be due to 

other factors which can be accounted for by using control variates. By explaining this variance 

using control variates, a metamodel has a reduction in variance, coefficient half widths, 

prediction mean square error, and prediction half width. The impact of this decreased variance 

may come at some expense, the decrease of degrees of freedom in the model error. However, if 

the reduction in variance is great enough; it can lead to greater insight into the true model 

significant factors and their coefficients, as well as insight into the true response surface.  

Control variates will not always be an effective technique for variance reduction, but this 

research provides the analyst with information on what to look for when analyzing the potential 

benefit of control variates. The low cost of setting up control variates makes it a possible 

technique in more situations than currently being used. If the analyst sees correlation between the 

control variates and response once the design has been run, he should continue the technique, 

and possibly continue even if limited correlation is seen. If the analyst sees a significant increase 

in R
2
adjusted between the model with control variates and the model without them, it is further 

support for the analyst to use the model containing control variates. He should then check all 

factors to ensure no factors changed significance level. Then employing the final model should 



 

111 

lead to a decrease in variance. This decrease will allow for smaller half widths surrounding the 

coefficient values and prediction estimates. All of these can be vital to an analyst when exploring 

the simulation and response surface. 

5.4 Recommendations for Future Research 

There are several potential areas for future research. This research looked at a single 

replication of the data in several cases. Looking at the response across several replications would 

allow for the estimation of the loss factor and minimum variance ratio mentioned by Porta Nova 

and Wilson (Nov. 1989). It would be very interesting to explore the interaction between 

minimum variance ratio and the prediction capability of a model with additional significant 

factors rather than simply the initial model with control variates as done by previously.  

This research could also be expanded to more areas of application. The literature review 

mentions several studies which could have gained benefit from the application of control 

variates, as well as several studies which did not explore the additional step of creating the third 

model with all significant factors after control variates were added. These are areas which should 

be explored to show the more wide spread use of these techniques.  

Antithetic variates and common random number generators are also variance reduction 

techniques. Further research could explore the impact of adding these techniques to those 

explored in this research. Comparing these techniques would show when efforts should be made 

to use these techniques in addition to, or instead of, control variates. 

Analysis of covariance is similar to control variates. While each technique has their own 

assumptions and applications, further research comparing their effectiveness could be helpful to 

analysts contemplating the use of both techniques.  
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Future research could also expand on the effectiveness of using a control variate, such as 

interarrival time, before a queue and a control variate, such as service time, following a queue. 

As shown in the traffic simulation, these do change, exploring the space as to when one becomes 

more effective and the other less effective could also be very beneficial. 

As mentioned in the thesis as replications increase, the design points can explain more 

variance, leaving less variance for the control variates to explain. Exploring the effectiveness of 

control variates as replications increase would be a very beneficial topic for future research 

involving control variates. 

5.5 Summary 

Control variates are an underappreciated technique to reduce the variance of simulation 

metamodels. A decrease in variance leads to decreased half widths around the coefficients of 

significant factors and the prediction estimates. While there are other options for variance 

reduction such as optimal experimental designs, antithetic variates, and common random 

number, control variates can be implemented for nearly no cost of time or resources as they 

require no additional runs and no analysis that would not be completed without them. The worst 

case scenario when applying control variates is that they do not have enough correlation to the 

response to offer any benefit and are determined insignificant, at a cost of only the time to record 

their values. The best case scenario can be an extreme reduction in unexplained variance. 

Simulations are a growing field for even more complex systems. Understanding these complex 

systems can be made easier when more variance is explained. The knowledge gained by the 

analyst and the customer can be immense, and considering it comes at the cost of simply tracking 

an element of the simulation, makes it very appealing to anyone analyzing a simulation 
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regardless of the design of the experiment. This research shows control variates can make even 

optimal experimental designs better. A design constructed to reduce variance can have an even 

further reduction in variance and designs constructed for better prediction estimates can have 

even better prediction estimates all due to the application of control variates. 
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Appendix A 

Matlab code for analyzing response. This will output the variance estimates and 

prediction mean square error and coverage. 

% %Inputs:  
% X: matrix of design,  
% CV: control variates,  
% Y: Response,  
% T: Truth Values 
% Points: Random Points X matrix 

                 
%load CCD250Face 
%load FF250input 
%load D250input 
%load Alias250input 
%load I250input 

  

  
        %Solves for estimates using the average across all replications 
        [n k]=size(Y); %solves for number of design points, n, and number of 

replications  
        CVBar1 = CV(:,1); 
        CVBar2 = CV(:,2); 
        alpha = .1; 
        Transfer = [X CV Y]; 
        [r c] = size(X); 
        DesignPoints = r/250; 
        TransferNew = zeros(r,c+2+1); 

         
for Rep = 1:250 
    for ROW = 1:DesignPoints 

     
    TransferNew((Rep-1)*(DesignPoints)+ROW,:) = Transfer(250*(ROW-1)+Rep,:); 

  
    end 
end 

  
%Creates structure array of all potential design formats 
        Xmatrices = struct('Xmatrix',[]);  
       % contains data ones X1 X2 X1X1  X2X2 X1X2 CV1 CV2 

Xmatrices(4).Xmatrix=TransferNew(:,1:c+2);    

        %data ones X1 X2 X1X1  X2X2 X1X2 CV2 

Xmatrices(3).Xmatrix=[TransferNew(:,1:c) TransferNew(:,c+2)];  
        %contains data ones X1 X2 X1X1  X2X2 X1X2 CV1 

Xmatrices(2).Xmatrix=TransferNew(:,1:c+1);  
        %contains data ones X1 X2 X1X1  X2X2 X1X2 

Xmatrices(1).Xmatrix=TransferNew(:,1:c);  

%Creates a matrix of just the design and matrix of the CV's    
XmatricesNew = struct('Xmatrix',[]);  
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        YNew = TransferNew(:,c+3); 
 %initializes variables 

        BetaValue = zeros(c,4); 
        HalfWidthTotal = zeros(c,4); 
        BetaValueNOCV = zeros(c,250); 
        BetaValueCV1 = zeros(c,250); 
        BetaValueCV2 = zeros(c,250); 
        BetaValueCVBoth = zeros(c,250); 
        VarianceRatio2 = zeros(250,4); 
        CorrelationList = zeros(250,2); 
        TSQ1=zeros(1,4); 
        TSQ=zeros(1,4); 
        Measure1=zeros(1,4); 
        Measure2=zeros(1,4); 
        VarianceRatio = zeros(1,4); 
        BetaValueBest = zeros(c,250); 
        VarianceLF = zeros(250,4); 
         

%loops for number of replications from 1 to 250 

 

for Rep = 1:250 

     
      Correlation = corr([Xmatrices(4).Xmatrix(1:DesignPoints*Rep,c+1:c+2) 

YNew(1:DesignPoints*Rep,:)]); 
      CorrelationList(Rep,:) = Correlation(3,1:2); 

       

       
        for i=1:4 
            YBar = YNew(1:DesignPoints*Rep,:); 
            G=Xmatrices(i).Xmatrix(1:DesignPoints*Rep,:);  

%Getting the design matrix and setting it to variable G 
            betas=(G'*G)^-1*G'*YBar;   %estimate the coefficients  
            gy = G*betas;     %generate the estimates 

  
%Implementing the estimator for the variance (tau_hat squared)   
            res=YBar-gy;            %get the residuals 
            tt=res'*res;           %sum of the squared residuals 
        [n pq] = size(G);     %getting #coefficients p + #control variates q 
            [n2 c2] = size(X);    %getting number of coefficients  
            p = c2;  

%renaming variables to match document where p = number jof factors 
            q = pq - p;            %sets q to number of control variates 
            tauSq = tt/(n-(p+q));   

%MSE: sum of squares divided by DoF r-c = n-(p+q) 
            VBcv = ((n-p-1)/(n-p-q-1))*tauSq*(X'*X)^-1;  %Var(BhatCV) 
            M1 = ((n - p -1)/(n-(p+q)-1))*tauSq;   

%Column 3 in table 5 of Nozari 
            M2 = ((n - p -1)/(n-(p+q)-1))*tauSq*finv(1-alpha,6,(n-(p+q))); 

%Column 4 in table 5 of Nozari 
            VarBetaCV = diag(VBcv); %getting the variance of the coefficients  
            HalfWidth = tinv(1-alpha/(2*(p)), n-(p)-q-1)*sqrt(VarBetaCV); 

%Equation for simultaneous half width from Montgomery Intro to Linear Reg pg 

98 
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            TSQ1(i)=tt; 
            TSQ(i)=tauSq;            %Vector of MSE values  
            Measure1(i)=M1; 
            Measure2(i)=M2; 
            BetaValue(:,i) = betas(1:p); 
            HalfWidthTotal(:,i) = HalfWidth; 
            VarianceRatio(i) = Measure1(1)/Measure1(i); 
        end 

           
        VarianceLF(Rep,:) = Measure1; 
        OUTPUTusingAVERAGErep = [TSQ1;TSQ;Measure1;Measure2]'; 
        HALFWIDTHusingAVERAGErep = HalfWidthTotal; 
        BetaValueNOCV(:,Rep) = BetaValue(:,1); 
        BetaValueCV1(:,Rep) = BetaValue(:,2); 
        BetaValueCV2(:,Rep) = BetaValue(:,3); 
        BetaValueCVBoth(:,Rep) = BetaValue(:,4); 
        VarianceRatio2(Rep,:) = VarianceRatio;   
end 

  
bestvariance = min(VarianceRatio2,[],2); 
for i = 1:250 
    if bestvariance(i) == VarianceRatio2(i,1) 
        BetaValueBest(:,i) = BetaValueNOCV(:,i); 
    elseif bestvariance(i) == VarianceRatio2(i,2) 
        BetaValueBest(:,i) = BetaValueCV1(:,i); 
    elseif bestvariance(i) == VarianceRatio2(i,3) 
        BetaValueBest(:,i) = BetaValueCV2(:,i); 
    else 
        BetaValueBest(:,i) = BetaValueCVBoth(:,i); 
    end 
end 

  
BetaValueCV = [BetaValueCV1, BetaValueCV2, BetaValueCVBoth, BetaValueBest]; 

  
B2= BetaValueNOCV; 
B4=Points*B2; 
[rx cx] = size(Points); 
[r c]=size(B4); 
B3=ones(r,c); 
T2=T*ones(1,c); 
B5=sqrt(B3./B4); 
E=B5-T2; 
MSE=(1/rx)*(diag(E'*E)); 

  
B6 = Xmatrices(1).Xmatrix*B2; 
[rx cx] = size(Xmatrices(1).Xmatrix); 
[r c]=size(B6); 
B3=ones(r,c); 
T2=YNew*ones(1,c); 
E=B6-T2; 
MSEmodel=(1/rx)*(diag(E'*E)); 

  
MSEnoCV=MSE;   
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B2=BetaValueCV; 
B4=Points*B2; 
[rx cx] = size(Points); 
[r c]=size(B4); 
B3=ones(r,c); 
T2=T*ones(1,c); 
B5=sqrt(B3./B4); 
E=B5-T2; 
MSE=(1/rx)*(diag(E'*E)); 
MSECV1 = MSE(1:250);  %it is only coincidence we have 2o models and 2o points 
MSECV2 = MSE(251:500); %truth model data file 
MSECVBoth = MSE(501:750); 
MSECVBest = MSE(751:1000); 

  
B6 = Xmatrices(1).Xmatrix*B2; 
[rx cx] = size(Xmatrices(1).Xmatrix); 
[r c]=size(B6); 
B3=ones(r,c); 
T2=YNew*ones(1,c); 
E=B6-T2; 
MSEmodelCV=(1/rx)*(diag(E'*E)); 

  
figure 
plot(bestvariance) 
hold all 
plot(VarianceRatio2(:,2)) 
hold all 
plot(VarianceRatio2(:,3)) 
hold all 
plot(VarianceRatio2(:,4)) 
title('Variance Estimate w/o CV divided by Variance w/ CV'); 
legend('noCV','CV1','CV2','CVboth','Location','NorthEastOutside') 
xlabel('Number of Replications'); 
ylabel('Variance Estimate Ratio'); 

  
figure 
plot(abs(CorrelationList)) 
title('Correlation'); 
legend('CV1','CV2','Location','NorthEastOutside') 
xlabel('Number of Replications'); 
ylabel('Correlation'); 

  
figure 
plot(MSEnoCV) 
hold all 
plot(MSECV1) 
hold all 
plot(MSECV2) 
hold all 
plot(MSECVBoth) 
title('Predicted Mean Square Error'); 
legend('noCV','CV1','CV2','CVboth','Location','NorthEastOutside') 
xlabel('Number of Replications'); 
ylabel('Predicted Mean Square Error'); 
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figure 
plot(MSEmodel) 
hold all 
plot(MSEmodelCV(1:250,:)) 
hold all 
plot(MSEmodelCV(251:500,:)) 
hold all 
plot(MSEmodelCV(501:750,:)) 
hold all 
plot(MSEmodelCV(751:1000,:)) 
title('Model Mean Square Error'); 
legend('noCV','CV1','CV2','CVboth','Location','NorthEastOutside') 
xlabel('Number of Replications'); 
ylabel('Mean Square Error'); 

  
PredMSEcombined = [MSEnoCV MSECV1 MSECV2 MSECVBoth]; 
%ModelMSEcombined =[NoCV CV1 CV2 CVboth] 
ModelMSEcombined = [MSEmodel MSEmodelCV(1:250,:) MSEmodelCV(251:500,:) 

MSEmodelCV(501:750,:)]; 
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Appendix B 

The output from the first modification of the traffic light model for each of the 4 designs run. 

Half Fraction 

Response CV1Right CV2Left 

65.77 8.81 11.21 

60.86 9.53 13.42 

67.05 8.81 10.40 

66.33 8.68 11.18 

71.78 9.13 11.17 

68.66 8.55 11.38 

145.09 8.76 12.39 

70.72 8.64 13.54 

67.86 8.79 11.91 

72.22 9.06 10.75 

76.27 8.99 12.14 

79.46 8.95 10.96 

246.95 8.37 11.93 

81.56 8.32 12.06 

96.08 9.49 10.93 

83.94 8.50 12.25 

   
D-Optimal 

Response CV1Right CV2Left 

77.835 8.843 11.37 

72.802 9.925 11.495 

56.796 9.387 13.123 

83.237 9.157 12.272 

70.658 9.049 12.732 

85.731 9.007 10.708 

70.201 9.295 10.993 

203.57 8.842 11.104 

63.078 9.533 13.573 

64.983 9.336 11.423 

79.905 8.773 10.419 

80.455 9.171 13.143 

63.759 9.254 11.409 

127.355 8.787 11.185 

105.121 9.055 11.331 

74.288 8.704 11.251 
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Alias Optimal 

Response CV1Right CV2Left 

81.295 9.535 13.032 

75.586 9.077 12.253 

76.492 9.033 12.845 

62.872 8.858 10.745 

72.296 9.295 11.035 

71.721 8.806 11.139 

81.104 9.443 13.522 

64.295 9.417 11.554 

98.096 8.83 10.546 

67.756 9.099 13.191 

75.27 9.27 11.369 

154.432 8.681 11.189 

187.702 8.833 11.247 

72.807 8.687 11.251 

71.045 8.819 12.009 

74.52 8.542 11.542 

   
I-Optimal 

Response CV1Right CV2Left 

63.242 9.533 13.418 

75.411 9.417 11.482 

108.554 8.676 10.518 

62.587 9.099 13.191 

75.107 9.27 11.368 

86.487 8.682 11.138 

93.618 9.107 11.347 

66.72 8.66 11.323 

71.045 8.819 12.009 

74.937 8.531 11.501 

67.445 9.129 12.525 

74.672 8.77 12.575 

82.491 8.832 10.979 

68.363 8.379 11.103 

73.997 9.26 11.622 

216.917 9.508 11.606 
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Appendix C 

Quad chart 
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